动力电池支撑架结构设计及散热性能分析

王博, 胡兵, 王小娟

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 454-460.

PDF(2459 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2459 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 454-460. DOI: 10.19912/j.0254-0096.tynxb.2022-0261

动力电池支撑架结构设计及散热性能分析

  • 王博1, 胡兵1, 王小娟2
作者信息 +

POWER BATTERY SUPPORT FRAME STRUCTURE DESIGN AND ANALYSIS OF HEAT DISSIPATION PERFORMANCE

  • Wang Bo1, Hu Bing1, Wang Xiaojuan2
Author information +
文章历史 +

摘要

可再生能源的发展势必带动动力电池的发展,在促进退役动力电池循环利用方面也将取得较大成效,在动力电池发展过程中,其安全性是值得广泛关注的重点问题,为提高动力锂电池组放电时散热效率,设计电池组支撑架,采用计算机仿真的方法研究不同支撑架结构、不同工质、不同流速下18650型锂电池构成的动力电池组的热性能。通过对空气和水2种工质流体、工质流速大小、工质入口位置等参数进行组合仿真分析,结果表明,随着工质流速的增加,电池组及支撑架表面的最高温度逐渐降低,当工质流速大于10 m/s时趋于稳定;适当的工质流入口的位置可增强降温效果,在低流速状态下,空气和水分别作为冷却工质时,纵向包裹型电池支撑架比横向包裹型电池支撑架电池组中表面温度分别降低了2.64%和1.86%;在高流速状态下,空气和水分别作为冷却工质时,纵向包裹型电池支撑架比横向包裹型电池支撑架电池组中表面温度分别降低了3.15%和1.83%。动力电池支撑架结构设计可为后续电池热控制提供理论参考。

Abstract

Renewable energy development is bound to lead to the development of power battery, retired electric vehicle battery recycling promotion will also made great achievements, in the process of power battery development, its security is the key problem worthy of attention, in order to improve power lithium battery discharge when the cooling efficiency, the design of the battery racks, The thermal performance of 18650 type lithium battery with different support frame structure, different working medium and different flow rate was studied by computer simulation. The results show that the maximum temperature on the surface of battery pack and support frame decreases with the increase of working fluid flow rate, and tends to be stable when the working fluid flow rate is more than 10 m/s. The proper position of working medium inlet can enhance the cooling effect. Under the condition of low flow rate, when air and water are used as cooling medium respectively, the surface temperature of longitudinal wrapped battery support frame is 2.64% and 1.86% lower than that of transverse wrapped battery support frame battery pack. At high flow rate, when air and water were used as cooling medium, the surface temperature of the longitudinal wrapped battery support frame was 3.15% and 1.83% lower than that of the transverse wrapped battery support frame. The structure design of power battery support frame can provide theoretical reference for subsequent battery thermal control.

关键词

新能源汽车 / 动力电池 / 热控制 / 机构设计 / 计算机仿真

Key words

new energy vehicles / power battery / thermal control / mechanism design / computer simulation

引用本文

导出引用
王博, 胡兵, 王小娟. 动力电池支撑架结构设计及散热性能分析[J]. 太阳能学报. 2022, 43(5): 454-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0261
Wang Bo, Hu Bing, Wang Xiaojuan. POWER BATTERY SUPPORT FRAME STRUCTURE DESIGN AND ANALYSIS OF HEAT DISSIPATION PERFORMANCE[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 454-460 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0261
中图分类号: U469.72   

参考文献

[1] 庄贵阳, 周宏春, 郭萍, 等. “双碳”目标与区域经济发展[J]. 区域经济评论, 2022(1):16-27.
ZHUANG G Y, ZHOU H C, GUO P, et al."Double carbon" goal and regional economic development[J]. Regional economic review, 2022(1): 16-27.
[2] HASSAN F.Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems[J]. Renewable energy, 2017, 106: 232-242.
[3] JAVED K, GOURIVEAU R, ZERHOUNI N, et al.Improving accuracy of long-term prognostics of PEMFC stack to estimate remaining useful life[C]//IEEE International Conference on Industrial Technology(ICIT), Seville, Spain, 2015.
[4] 刘楠, 李明高, 郭爱, 等. 基于价值损耗的燃料电池混合动力能量管理策略评价[J]. 太阳能学报, 2021, 42(2): 281-288.
LIU N, LI M G, GUO A, et al.Evaluation of energy management strategy based on value loss of fuel cell hybrid system[J]. Acta energiae solaris sinica, 2021, 42(2): 281-288.
[5] 安周建, 贾力, 杨成亮, 等. 锂离子动力电池液体冷却实验研究[J]. 中国科学院大学学报, 2018, 35(2): 254-260.
AN Z J, JIA L, YANG C L, et al.Experimental investigation of lithium-ion power battery liquid cooling[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 254-260.
[6] 芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205.
RUI X Y, FENG X N, HAN X B, et al.Review on thermal runaway propagation of lithium ion batteries[J]. Chinese battery industry, 2020, 24(4): 193-201, 205.
[7] GOMEZ J, NELSON R, KALU E E, et al.Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects[J]. Journal of power sources, 2011, 196(10): 4826-4831.
[8] 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14): 87-104.
SUN Z Y, WANG Z P, LIU P, et al.Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of mechanical engineering, 2021, 57(14): 87-104.
[9] AN Z, LI J, LI X, et al.Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel[J]. Applied thermal engineering, 2017, 117: 534-543.
[10] 尉谷雨. 高温环境下电动汽车动力电池热管理方案研究[D]. 北京: 清华大学, 2019.
YU G Y.Research on thermal management scheme of power battery in electric vehicles under high temperature environment[D]. Beijing: Tsinghua University, 2019.
[11] 魏立婷, 贾力, 安周建, 等. 基于柔性通道的圆柱型锂电池热管理实验研究[J]. 工程热物理学报, 2021, 42(9): 2431-2437.
WEI L T, JIA L, AN Z J, et al.Investigation on the flow boiling in flexible channels for cylindrical lithium-ion batteries thermal management[J]. Journal of engineering thermophysics, 2021, 42(9): 2431-2437.
[12] 王明悦, 林家源, 刘新华, 等. 基于蛇形通道的电池组液冷方案设计与优化[J]. 北京航空航天大学学报, 2022, 48(1): 166-173.
WANG M Y, LIN J Y, LIU X H, et al.Design and optimization of battery pack liquid cooling scheme based on serpentine channel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(1): 166-173.
[13] RAO Z H, ZHANG X.Investigation on thermal management performance of wedge﹕Haped microchannels for rectangular Li-on batteries[J]. International journal of energy research, 2019, 43(8): 3876-3890.
[14] ZHOU H B, ZHOU F, WANG Q Z, et al.Thermal management of cylindrical lithium-ion battery based on a liquid cooling method with half-helical duct[J]. Applied thermal engineering, 2019, 162: 114257.
[15] YE X, ZHAO Y, QUAN Z.Thermal management system of lithium-ion battery module based on micro heat pipe array[J]. International journal of energy research, 2018, 42(2): 648-655.
[16] NASIR F M, ABDULLAH M Z, ISMAIL M A.Experimental investigation of water-cooled heat pipes in the thermal management of lithium-ion EV batteries[J]. Arabian journal for science and engineering, 2019, 44(9): 7541-7552.
[17] KIM G H, SMITH K, LEE K J, et al.Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales[J]. Journal of the Electrochemical Society, 2011, 158(8):A955-A969.
[18] KWON K H, SHIN C B, KANG T H, et al.A two-dimensional modeling of a lithium-polymer battery[J]. Journal of power sources, 2006, 163(1): 151-157.
[19] 杨凯, 李大贺, 陈实, 等. 电动汽车动力电池的热效应模型[J]. 北京理工大学学报, 2008, 28(9): 782-785.
YANG K, LI D H, CHEN S, et al.Thermal model of batteries for electrical vehicles[J]. Transactions of Beijing Institute of Technology, 2008, 28(9): 782-785.
[20] CHEN S C, WAN C C, WANG Y Y.Thermal analysis of lithium-ion batteries[J]. Journal of power sources, 2005, 140(1): 111-124.
[21] 陈南, 李兵兵. 电动汽车动力电池包结构设计分析研究进展[J]. 机械制造与自动化, 2022, 51(1): 1-6, 10.
CHEN N, LI B B.Progress in research and analysis of structural design of electric vehicle power battery pack[J]. Machine building & automation, 2022, 51(1): 1-6, 10.
[22] BASU S, HARIHARAN K S, KOLAKE S M, et al.Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied energy, 2016, 181: 1-13.

基金

新疆维吾尔自治区自然科学基金(2021D01A66)

PDF(2459 KB)

Accesses

Citation

Detail

段落导航
相关文章

/