氮掺杂芦荟碳和磁场对厌氧共发酵系统产甲烷的协同作用

安锦航, 李冰洁, 王凯君, 柯腾, 云斯宁

太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 532-540.

PDF(2159 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2159 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (6) : 532-540. DOI: 10.19912/j.0254-0096.tynxb.2022-0280

氮掺杂芦荟碳和磁场对厌氧共发酵系统产甲烷的协同作用

  • 安锦航, 李冰洁, 王凯君, 柯腾, 云斯宁
作者信息 +

SYNERGISTIC EFFECT OF ALOE PEEL-DERIVED NITROGEN-DOPED BIO-BASED CARBON AND MAGNETIC FIELD ON METHANE PRODUCTION IN ANAEROBIC CO-DIGESTION

  • An Jinhang, Li Bingjie, Wang Kaijun, Ke Teng, Yun Sining
Author information +
文章历史 +

摘要

采用氮掺杂芦荟碳(N-C)作为厌氧共发酵的添加剂,研究其和磁场的协同作用对厌氧共发酵系统的甲烷产量、总化学需氧量(TCOD)去除率、pH值、总固体(TS)和挥发性固体(VS)去除率的影响。结果表明:与对照组CK相比,添加N-C可使发酵系统的产气高峰提前、沼气产量增加。给发酵系统施加5 mT的磁场,添加N-C可进一步提升共发酵系统性能。N-C添加剂和磁场协同作用可使产沼气高峰比CK组提前2~3 d,累计沼气产量提高48.4%~101.6%。质量分数为0.30% N-C的添加量使发酵系统获得最高的沼气产量(537.6 mL/g VS)、最高的甲烷含量(59.3%)和甲烷产量(318.8 mL/g VS)、最高的TCOD去除率(79.02%)、最高的TS去除率(44.1%)和VS去除率(55.7%)。最后,解释N-C作为添加剂和磁场在增强厌氧共发酵甲烷产量的协同作用。

Abstract

In this study, aloe peel-derived nitrogen-doped bio-based carbon (N-C) was used as an additive in an anaerobic co-digestion system to investigate the synergistic effect of N-C and a magnetic field on methane production, pH value, and the removal rates of total chemical oxygen demand (TCOD), total solids (TS), and volatile solids (VS). The results show that, compared with the control group, the addition of N-C can improve the gas production peak of the digestion system and increase biogas production. Applying a magnetic field of 5 mT to the digestion system and adding N-C can further improve the performance of the co-digestion system. The synergistic effect of the N-C additive and a magnetic field results in a biogas production peak 2-3 days earlier than that of the CK group, and the cumulative biogas production increases by 48.40%-101.6%. The addition of 0.30% N-C enable the digestion system to obtain the highest biogas production (537.6 mL/g VS), methane content (59.3%), methane production (318.8 mL/g VS), and removal rate of TCOD (79.02%), TS (44.1%) and VS (55.7%). This paper explains the synergistic effect of N-C as an additive and a magnetic field in enhancing methane production in anaerobic co-digestion.

关键词

磁场 / 厌氧发酵 / 甲烷 / 沼气 / 氮掺杂芦荟碳 / 表面官能团

Key words

magnetic fields / anaerobic digestion / methane / biogas / aloe peel-derived nitrogen-doped bio-based carbon / surface functional groups

引用本文

导出引用
安锦航, 李冰洁, 王凯君, 柯腾, 云斯宁. 氮掺杂芦荟碳和磁场对厌氧共发酵系统产甲烷的协同作用[J]. 太阳能学报. 2023, 44(6): 532-540 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0280
An Jinhang, Li Bingjie, Wang Kaijun, Ke Teng, Yun Sining. SYNERGISTIC EFFECT OF ALOE PEEL-DERIVED NITROGEN-DOPED BIO-BASED CARBON AND MAGNETIC FIELD ON METHANE PRODUCTION IN ANAEROBIC CO-DIGESTION[J]. Acta Energiae Solaris Sinica. 2023, 44(6): 532-540 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0280
中图分类号: TK6   

参考文献

[1] 张仙梅, 云斯宁, 杜玉凤, 等. 沼气厌氧发酵生物催化剂研究进展与展望[J]. 农业机械学报, 2015, 46(5): 141-155.
ZHANG X M, YUN S N, DU Y F, et al.Recent progress and outlook of biocatalysts for anaerobic fermentation in biogas production process[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 141-155.
[2] 赵宝润. 厌氧发酵法处理工业有机废水[J]. 化工环保, 1981(2): 37-42.
ZHAO B R.Anaerobic fermentation for treatment of industrial organic wastewater[J]. Environmental protection of chemical industry, 1981(2): 37-42.
[3] BELLE A J, LANSING S, MULBRY W, et al.Anaerobic co-digestion of forage radish and dairy manure in complete mix digesters[J]. Bioresource technology, 2015, 178: 230-237.
[4] ZARKADAS I S, SOFIKITI A S, VOUDRIAS E A, et al.Thermophilic anaerobic digestion of pasteurised food wastes and dairy cattle manure in batch and large volume laboratory digesters: focussing on mixing ratios[J]. Renewable energy, 2015, 80: 432-440.
[5] HUANG X L, YUN S N, ZHU J, et al.Mesophilic anaerobic co-digestion of aloe peel waste with dairy manure in the batch digester: focusing on mixing ratios and digestate stability[J]. Bioresource technology, 2016, 218: 62-68.
[6] LI Y Q, ZHANG R H, HE Y F, et al.Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor(CSTR)[J]. Bioresource technology, 2014, 156: 342-347.
[7] WANG Z Q, YUN S N, XU H F, et al.Mesophilic anaerobic co-digestion of acorn slag waste with dairy manure in a batch digester: focusing on mixing ratios and bio-based carbon accelerants[J]. Bioresource technology, 2019, 286: 121394.
[8] NIU C, LIANG W H, REN H Q, et al.Enhancement of activated sludge activity by 10-50 mT static magnetic field intensity at low temperature[J]. Bioresource technology, 2014, 159: 48-54.
[9] DEBOWSKI M, ZIELINSKI M, KISIELEWSKA M, et al.Effect of constant magnetic field on anaerobic digestion of algal biomass[J]. Environmental technology, 2016, 37(13): 1656-1663.
[10] LEBKOWSKA M, NAROZNIAK-RUTKOWSKA A, PAJOR E.Effect of a static magnetic field of 7 mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge[J]. Bioresource technology, 2013, 132: 78-83.
[11] CHEN S S, ROTARU A E, SHRESTHA P M, et al.Promoting interspecies electron transfer with biochar[J]. Scientific reports, 2014, 4: 5019.
[12] GUO S S, CHEN Y X, SHI L L, et al.Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries[J]. Applied surface science, 2018, 437: 136-43.
[13] LI R Z, HUANG J F, LI J Y, et al.Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes[J]. Journal of electroanalytical chemistry, 2020, 862: 114044.
[14] LI B J, YUN S N, XING T, et al.A strategy for understanding the enhanced anaerobic co-digestion via dual-heteroatom doped bio-based carbon and its functional groups[J]. Chemical engineering journal, 2021, 425: 130473.
[15] WANG C, YUN S N, XU H F, et al.Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: an efficient catalyst for triiodide reduction and accelerant for anaerobic digestion[J]. Ceramics international, 2020, 46(3): 3292-3303.
[16] HAN F, YUN S N, SHI J, et al.Efficient dual-function catalysts for triiodide reduction reaction and hydrogen evolution reaction using unique 3D network aloe waste-derived carbon-supported molybdenum-based bimetallic oxide nanohybrids[J]. Applied catalysis B: environmental, 2020, 273: 119004.
[17] JIA B, YUN S N, SHI J, et al.Enhanced anaerobic mono- and co-digestion under mesophilic condition: focusing on the magnetic field and Ti-sphere core-shell structured additives[J]. Bioresource technology, 2020, 310: 123450.
[18] 李玉春, 陈广银, 常志州, 等. 碳氮比对稻秸厌氧发酵过程的影响[J]. 中国沼气, 2012, 30(4) : 25-29.
LI Y C, CHEN G Y, CHANG Z Z, et al.Effect of C/N on anaerobic digestion of rice straw[J]. China biogas, 2012, 30(4): 25-29.
[19] WANG Z Q, YUN S N, WANG X D, et al.Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices[J]. Ceramics international, 2019, 45(4): 4208-4218.
[20] BORGHEI M, LAOCHAROEN N, KIBENA-PõLDSEPP E, et al. Porous N, P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells[J]. Applied catalysis B: environmental, 2017, 204: 394-402.
[21] MA G F, YANG Q, SUN K J, et al.Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource technology, 2015, 197: 137-142.
[22] SETHIA G, SAYARI A.Nitrogen-doped carbons: remarkably stable materials for CO2 capture[J]. Energy & fuels, 2014, 28(4) : 2727-2731.
[23] ZENG Y W, MA D K, WANG W, et al.N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids[J]. Applied surface science, 2015, 342: 136-143.
[24] YI H T, ZHU Y Q, CHEN X Y, et al.Nitrogen and sulfur co-doped nanoporous carbon material derived from p-nitrobenzenamine within several minutes and the supercapacitor application[J]. Journal of alloys and compounds, 2015, 649: 851-858.
[25] CHEN S, ZHAO L L, MA J Z, et al.Edge-doping modulation of N, P-codoped porous carbon spheres for high-performance rechargeable Zn-air batteries[J]. Nano energy, 2019, 60: 536-544.
[26] XING T, YUN S N, LI B J, et al.Coconut-shell-derived bio-based carbon enhanced microbial electrolysis cells for upgrading anaerobic co-digestion of cow manure and aloe peel waste[J]. Bioresource technology, 2021, 338: 125520.
[27] KE T, YUN S N, WANG K J, et al.Enhanced anaerobic co-digestion performance by using surface-annealed titanium spheres at different atmospheres[J]. Bioresource technology, 2022, 347: 126341.
[28] SETHIA G, SAYARI A.Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture[J]. Carbon, 2015, 93: 68-80.
[29] HWANG M H, JANG N J, HYUN S H, et al.Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH[J]. Journal of biotechnology, 2004, 111(3): 297-309.
[30] WANG G J, GAO X, LI Q, et al.Redox-based electron exchange capacity of biowaste-derived biochar accelerates syntrophic phenol oxidation for methanogenesis via direct interspecies electron transfer[J]. Journal of hazardous materials, 2020, 390: 121726.

基金

国家重点研发计划(2018YFB1502900); 陕西省国际科技合作项目重点计划(2019KWZ-03); 陕西省重点科技创新团队(2022TD-34)

PDF(2159 KB)

Accesses

Citation

Detail

段落导航
相关文章

/