为提高计算流体力学(CFD)的计算精度,在数值仿真过程中考虑叶片挥舞运动,研究叶片的挥舞运动对大型风力机气动特性的影响。以NH1500三叶片风力机为研究对象,采用大涡模拟(LES),通过滑移网格和动网格技术实现叶片的旋转和不同振幅的挥舞运动,与刚性叶片的计算结果进行对比分析。结果表明:考虑挥舞的风力机叶片,在输出特性、速度场、压力场以及叶尖流动特性方面上均与刚性叶片存在明显差异。为使模拟结果更接近实际,应在大型风力机仿真工作中考虑叶片的挥舞运动。
Abstract
In order to improve the calculation accuracy of CFD (computational fluid dynamics), the blade flapping motion is considered in the numerical simulation process, and the influence of blade flapping motion on the aerodynamic characteristics of large-scale wind turbine is studied. Taking NH1500 three blade wind turbine as the research object, LES(Large Eddy Simulation) simulation is adopted, the blade rotation and flapping motion with different amplitudes are realized through sliding grid and moving grid technology, which is compared with the calculation results of rigid blade. The research results show that compared with the rigid blade, the blade flapping motion will lead to differences in output characteristics of wind turbine, velocity field, pressure field and tip flow characteristics. In order to make the simulation results closer to reality, blade flapping motion should be considered in the simulation of large-scale wind turbine.
关键词
风力机 /
数值模拟 /
气动载荷 /
挥舞运动
Key words
wind turbines /
numerical simulation /
aerodynamic loads /
flapping motion
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈亚君, 吴国庆, 倪红军, 等. 风力发电机组叶片材料综述[J]. 化工新型材料, 2010, 38(9): 37-39.
CHEN Y J, WU G Q, NI H J, et al.Research of fan blade material[J]. New chemical materials, 2010, 38(9): 37-39.
[2] CHEN X, QIN Z W, YANG K, et al.Numerical analysis and experimental investigation of wind turbine blades with innovative features: structural response and characteristics[J]. Science China(technological sciences), 2015, 58(1): 1-8.
[3] SHENG C H, NARRAMORE J C.Unsteady simulations of bell-agusta 609 rotor undergoing higher harmonic oscillation[J]. Journal of aircraft, 2008, 45(3): 971-980.
[4] AGEZE M B, WU H C, HU Y F.Comparative study on uni-and bi-directional fluid structure coupling of wind turbine blades[J]. Energies, 2017, 10(10): 1499.
[5] CALDERER A, GUO X, SHEN L.Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines[J]. Journal of computational physics, 2018, 355: 144-175.
[6] 陈金霞, 马剑龙, 吕文春. 叶尖形变与叶尖涡涡量间的关联性研究[J]. 可再生能源, 2018, 36(4): 104-109.
CHEN J X, MA J L, LYU W C.Research on correlation between deformation of blade tip and tip vortex vorticity[J]. Renewable energy resources, 2018, 36(4): 104-109.
[7] 闫萌萌. 施加低阶挥舞振型的风轮气动特性研究[D]. 呼和浩特: 内蒙古工业大学, 2017.
YAN M M.Aerodynamic characteristics of a wind rotor with low order flapping modes[D]. Hohhot: Inner Mongolia University of Technology, 2017.
[8] 方玉财, 高志鹰, 闫萌萌, 等. 叶片挥舞振动后风轮流场特性[J]. 排灌机械工程学报, 2020, 38(4): 390-395.
FANG Y C, GAO Z Y, YAN M M, et al.Characteristics of wind turbine flow field after blade vibration[J]. Journal of drainage and irrigation machinery engineering, 2020, 38(4): 390-395.
[9] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
WANG F J.Computational fluid dynamics analysis-principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004.
[10] 陈佳慧. 风力机气动弹性与动态响应计算[D]. 南京: 南京航天航空大学, 2011.
CHEN J H.Calculation of aeroelastic and dynamic responses of wind turbine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[11] 陈恺. 基于叶尖小翼的大型风力机增功研究[D]. 南京: 南京航天航空大学, 2019.
CHEN K.Research on the power enhancement of large-scale wind turbines with winglets[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.