基于多模型的Z型流道燃料电池的性能优化

代世勋, 曹爱红, 王来华

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 476-485.

PDF(2471 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2471 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 476-485. DOI: 10.19912/j.0254-0096.tynxb.2022-0289

基于多模型的Z型流道燃料电池的性能优化

  • 代世勋, 曹爱红, 王来华
作者信息 +

PERFORMANCE OPTIMIZATION OF Z-CHANNEL FUEL CELL BASED ON MULTI-MODEL

  • Dai Shixun, Cao Aihong, Wang Laihua
Author information +
文章历史 +

摘要

建立三维质子交换膜燃料单电池(PEMFC)数值模型,探究Z型流道PEMFC流道参数(角度、宽度、深度)、运行参数(温度、氢气湿度、氧气化学计量比)对燃料电池性能的影响,并建立多神经网络(MNN)模型,对上述参数进行优化。研究结果表明,最佳流道参数为角度-宽度-深度为25°-1.15 mm-0.85 mm,最佳运行参数为温度-湿度-化学计量比为349.15 K-0.60-4.5。通过对比优化前后的Z型流道PEMFC的性能可看出,优化后的Z型流道PEMFC在稳态特性及瞬态特性方面得到明显改善。

Abstract

This paper establishes a numerical analytical model of 3 D proton exchange membrane fuel single cell (PEMFC), explores the influence of PEMFC channel parameters (angle, width, depth), operation parameters (temperature, hydrogen humidity, oxygen stoichiometric ratio) on the fuel cell performance, and establishes a multi-neural network (MNN) model to optimize the above parameters.The results show that the optimal flow channel parameter is angle-width-depth equal to 25-1.15 mm-0.85 mm, and the optimal operating parameter is temperature-humidity-stoichiometry equal to 349.15 K-0.60-4.5. By comparing the performance of the Z channel PEMFC before and after the optimization, it can be seen that the steady-state characteristics and transient characteristics of the PEMFC with optimized Z channel is significantly improved.

关键词

PEMFC / 神经网络 / 优化 / 流道 / 运行参数

Key words

PEMFC / neural network / optimization / channel / operation parameter

引用本文

导出引用
代世勋, 曹爱红, 王来华. 基于多模型的Z型流道燃料电池的性能优化[J]. 太阳能学报. 2022, 43(6): 476-485 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0289
Dai Shixun, Cao Aihong, Wang Laihua. PERFORMANCE OPTIMIZATION OF Z-CHANNEL FUEL CELL BASED ON MULTI-MODEL[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 476-485 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0289
中图分类号: TK513.5   

参考文献

[1] WANG Q, QU Z G, JIANG Z Y, et al.Numerical study on vanadium redox flow battery performance with non-uniformly compressed electrode and serpentine flow field[J]. Applied energy, 2018, 220(Jun.15): 106-116.
[2] LIM B H, MAJLAN E H, DAUD W, et al.Numerical investigation of the effect of three-dimensional modified parallel flow field designs on proton exchange membrane fuel cell performance[J]. Chemical engineering science, 2020, 217: 115499.
[3] MONSA T, HOCINE B M, YOUCE S, et al.Unsteady three-dimensional numerical study of mass transfer in PEM fuel cell with spiral flow field[J]. International journal of hydrogen energy, 2017, 42(2): 1237-1251.
[4] YAN X, GUAN C, ZHANG Y, et al.Flow field design with 3D geometry for proton exchange membrane fuel cells[J]. Applied thermal engineering, 2019, 147: 1107-1114.
[5] 石磊, 郑明刚, 孔祥利. 8通道复合蛇形流道质子交换膜燃料电池综合优化研究[J]. 可再生能源, 2020, 38(4): 6.
SHI L, ZHENG M G, KONG X L.8-Channel composite serpentine fluid channel proton exchange membrane fuel cell comprehensive optimization study[J]. Renewable energy, 2020, 38(4): 6.
[6] 熊承盛, 罗马吉, 陈奔, 等. 流道结构对燃料电池阴极氧气分布的影响[J]. 电源技术, 2018, 42(2): 4.
XIONG C S, LUO M J, CHEN B, et al.Effects of flow channel structure on oxygen distribution of cathode of fuel cell[J]. Power supply technology, 2018, 42(2): 4.
[7] KHAZAEE I, SABADBAFAN H.Numerical study of changing the geometry of the flow field of a PEM fuel cell[J]. Heat and mass transfer, 2016, 52(5): 993-1003.
[8] WANG L P, ZHANG L H, JIANG J P. Optimization of channel dimensions in the flow-field for PEMFC[J]. Applied mechanics and materials, 2010, 44-47: 2404-2408.
[9] 孟庆然, 田爱华, 陈海伦, 等. 质子交换膜燃料电池流道尺寸的数值模拟[J]. 吉林化工学院学报, 2020, 37(3): 5.
MENG Q R, TIAN A H, CHEN H L, et al.Numerical Simulation of the flow channel dimensions of proton exchange membrane fuel cells[J]. Journal of Jilin University of Chemical Technology, 2020, 37(3): 5.
[10] 王玚, 王长辉, 林震. 流道截面形状对PEM燃料电池性能的影响[J]. 电源技术, 2012, 36(1): 3.
WANG Y, WANG C H, LIN Z.Effect of flow channel cross-section shape on PEM fuel cell performance[J]. Power supply technology, 2012, 36(1): 3.
[11] ELITON F, MANCUSI E, SILVA A D, et al.Study of the effects of flow field with non-uniform cross-sectional area on PEMFC species and heat transfer[J]. International journal of heat & mass transfer, 2011, 54(21-22): 4462-4472.
[12] PENG Y, MAHYARI H M, MOSHFEGH A, et al.A transient heat and mass transfer CFD simulation for proton exchange membrane fuel cells (PEMFC) with a dead-ended anode channel[J]. International communications in heat and mass transfer, 2020, 115: 104638.
[13] ZHANG X J, ZHANG N, LI W Z.Effect of the gradient flow field on PEM fuel cell performance[J]. Power supply technology, 2010, 34(7): 664-666.
[14] MOJICA F, RAHMAM M A, MORA J M, et al.Experimental study of three channel designs with model comparison in a PEM fuel cell[J]. Fuel cells, 2020, 20(5): 547-557.
[15] SANTAMARIA A D, COOPER N J, BECTON M K, et al.Effect of channel length on interdigitated flow-field PEMFC performance: a computational and experimental study[J]. International journal of hydrogen energy, 2013, 38(36): 16253-16263.
[16] UBONG E U, SHI Z, WANG X, Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell[J]. Journal of the electrochemical society, 2009, 156(10): B1276-B1282.

PDF(2471 KB)

Accesses

Citation

Detail

段落导航
相关文章

/