机器学习与统计方法在太阳能预报中的比较性分析

普智勇, 夏攀, 张璐, 王硕, 王允, 闵敏

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 162-167.

PDF(1222 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1222 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 162-167. DOI: 10.19912/j.0254-0096.tynxb.2022-0290

机器学习与统计方法在太阳能预报中的比较性分析

  • 普智勇1, 夏攀2,3, 张璐4, 王硕2,3, 王允1, 闵敏2,3
作者信息 +

COMPARATIVE ANALYSIS OF MACHINE LEARNING AND STATISTICAL METHODS IN SOLAR ENERGY PREDICTION

  • Pu Zhiyong1, Xia Pan2,3, Zhang Lu4, Wang Shuo2,3, Wang Yun1, Min Min2,3
Author information +
文章历史 +

摘要

回顾传统太阳能预测方法的发展历程和特点,然后详细总结近几年基于先进的机器学习算法所发展的太阳能预测新方法。主要分析支持向量机、人工神经网络和长短期记忆网络算法的现阶段发展水平。分析得到基于机器学习的太阳能预测方法,其预测准确率较高、均方根误差和平均偏差误差小、预测过程耗时短、短时间能及时给出预测结果。最后,归纳传统和机器学习预测方法各自的优缺点和面临的难题。指出机器学习模型泛化能力弱(普适性弱),易受环境因素干扰且预测过程和结果很难给出物理解释。

Abstract

This paper firstly reviews the development process and characteristics of traditional solar energy prediction methods. Then, the new solar energy prediction methods based on advanced machine learning algorithm in recent years are summarized . The current state-of-the-art progress of support vector machine, artificial neural network, and long/short-term memory network algorithms is mainly analyzed, respectively. The analysis shows that the solar energy prediction method based on machine learning has high prediction accuracy, small root mean square error and average deviation error, short prediction process time and timely prediction results. Finally, the advantages and disadvantages of traditional and machine learning prediction methods are summarized. It is pointed out that, the generalization ability of machine learning model is weak (weak universality), it is very easy to be disturbed by external environmental factors. It is also difficult to give suitable physical explanations for their prediction process and results.

关键词

太阳能 / 预测 / 机器学习 / 深度学习 / 神经网络

Key words

solar energy / forecasting / machine learning / deep learning / neural network

引用本文

导出引用
普智勇, 夏攀, 张璐, 王硕, 王允, 闵敏. 机器学习与统计方法在太阳能预报中的比较性分析[J]. 太阳能学报. 2023, 44(7): 162-167 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0290
Pu Zhiyong, Xia Pan, Zhang Lu, Wang Shuo, Wang Yun, Min Min. COMPARATIVE ANALYSIS OF MACHINE LEARNING AND STATISTICAL METHODS IN SOLAR ENERGY PREDICTION[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 162-167 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0290
中图分类号: TM615   

参考文献

[1] 李芬, 陈正洪, 成驰, 等. 太阳能光伏发电量预报方法的发展[J]. 气候变化研究进展, 2011, 7(2): 136-142.
LI F, CHEN Z H, CHENG C, et al.Review on forecast methods for photovoltaic power generation[J]. Advances in climate change research, 2011, 7(2): 136-142.
[2] ZHU H L, LI X, SUN Q, et al.A power prediction method for photovoltaic power plant based on wavelet decomposition and artificial neural networks[J]. Energies, 2015, 9(1): 11.
[3] DAS U K, TEY K S, SEYEDMAHMOUDIAN M, et al.Forecasting of photovoltaic power generation and model optimization: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 912-928.
[4] HOCAOğLU F O, GEREK Ö N, KURBAN M. Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks[J]. Solar energy, 2008, 82(8): 714-726.
[5] MELLIT A, PAVAN A M.A 24 h forecast of solar irradiance using artificial neural network: application for performance prediction of a grid-connected PV plant at Trieste, Italy[J]. Solar energy, 2010, 84(5): 807-821.
[6] WANG F, MI Z Q, SU S, et al.Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters[J]. Energies, 2012, 5(5): 1355-1370.
[7] DALTON G, LOCKINGTON D, BALDOCK T.Feasibility analysis of renewable energy supply options for a grid-connected large hotel[J]. Renewable energy, 2009, 34(4): 955-964.
[8] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225.
[9] AHMED R, SREERAM V, MISHRA Y, et al.A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization[J]. Renewable and sustainable energy reviews, 2020, 124: 109792.
[10] HUANG J, KOROLKIEWICZ M, AGRAWAL M, et al.Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system(CARDS) model[J]. Solar energy, 2013, 87: 136-149.
[11] HINTON G E, SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[12] REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al.Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
[13] VOYANT C, NOTTON G, KALOGIROU S, et al.Machine learning methods for solar radiation forecasting: a review[J]. Renewable energy, 2017, 105: 569-582.
[14] DAVID M, RAMAHATANA F, TROMBE P J, et al.Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models[J]. Solar energy, 2016, 133: 55-72.
[15] SUN H W, YAN D, ZHAO N, et al.Empirical investigation on modeling solar radiation series with ARMA-GARCH models[J]. Energy conversion and management, 2015, 92: 385-395.
[16] VOYANT C, MUSELLI M, PAOLI C, et al.Hybrid methodology for hourly global radiation forecasting in Mediterranean area[J]. Renewable energy, 2013, 53: 1-11.
[17] 刘福盛. 基于神经网络的光伏功率短期预测方法的研究[D]. 吉林: 东北电力大学, 2017.
LIU F S.Study on short-term photovoltaic power forecasting method based on artificial neural network[D]. Jinlin: Northeast Electric Power University, 2017.
[18] 陈志宝, 丁杰, 周海, 等. 地基云图结合径向基函数人工神经网络的光伏功率超短期预测模型[J]. 中国电机工程学报, 2015, 35(3): 561-567.
CHEN Z B, DING J, ZHOU H, et al.A model of very short-term photovoltaic power forecasting based on ground-based cloud images and RBF neural network[J]. Proceedings of the CSEE, 2015, 35(3): 561-567.
[19] JUNIOR J G D S F, OOZEKI T, OHTAKE H, et al. Forecasting regional photovoltaic power generation-a comparison of strategies to obtain one-day-ahead data[J]. Energy procedia, 2014, 57: 1337-1345.
[20] MA J M, JIANG H C, HUANG K Z, et al.Novel field-support vector regression-based soft sensor for accurate estimation of solar irradiance[J]. IEEE transactions on circuits and systems I: regular papers, 2017, 64(12): 3183-3191.
[21] ARIKAN C, OZDEMIR M.Classification of power quality disturbances at power system frequency and out of power system frequency using support vector machines[J]. Prz Elektrotech, 2013, 89: 284-291.
[22] 马志春, 刘振永, 吴淑花. 基于支持向量机的光伏发电功率预测系统设计[J]. 现代电子技术, 2021, 44(10): 91-94.
MA Z C, LIU Z Y, WU S H.Design of photovoltaic power prediction system based on support vector machine[J]. Modern electronics Technique, 2021, 44(10): 91-94.
[23] MOSAVI A, SALIMI M, FAIZOLLAHZADEH ARDABILI S, et al.State of the art of machine learning models in energy systems, a systematic review[J]. Energies, 2019, 12(7): 1301.
[24] QAZI A, FAYAZ H, WADI A, et al.The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review[J]. Journal of cleaner production, 2015, 104: 1-12.
[25] ALAM S, KAUSHIK S C, GARG S N.Computation of beam solar radiation at normal incidence using artificial neural network[J]. Renewable energy, 2006, 31(10): 1483-1491.
[26] FERNáNDEZ E F, ALMONACID F, SARMAH N, et al. A model based on artificial neuronal network for the prediction of the maximum power of a low concentration photovoltaic module for building integration[J]. Solar energy, 2014, 100: 148-158.
[27] ELSHEIKH A H, SHARSHIR S W, ABDELAZIZ M, et al.Modeling of solar energy systems using artificial neural network: a comprehensive review[J]. Solar energy, 2019, 180: 622-639.
[28] LINARES-RODRIGUEZ A, RUIZ-ARIAS J A, POZO-VAZQUEZ D, et al. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images[J]. Energy, 2013, 61: 636-645.
[29] LINARES-RODRIGUEZ A, QUESADA-RUIZ S, POZO-VAZQUEZ D, et al.An evolutionary artificial neural network ensemble model for estimating hourly direct normal irradiances from meteosat imagery[J]. Energy, 2015, 91: 264-273.
[30] LIPTON Z C, BERKOWITZ J, ELKAN C.A critical review of recurrent neural networks for sequence learning[J]. ArXiv preprint arXiv, 2015, 1506.00019.
[31] HOCHREITER S, SCHMIDHUBER J.Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[32] GHIMIRE S, DEO R C, RAJ N, et al.Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms[J]. Applied energy, 2019, 253: 113541.
[33] LI C, ZHANG Y N, ZHAO G H, et al.Hourly solar irradiance prediction using deep BiLSTM network[J]. Earth science informatics, 2021, 14(1): 299-309.
[34] 郑小山. 基于深度学习的太阳能发电功率预测方法研究[D]. 天津: 天津大学, 2020.
ZHENG X S.Research on solar power generation prediction based on deep learning[D]. Tianjin: Tianjin University, 2020.
[35] 孟珊珊, 郑健, 吴昊. 碟式太阳能集热器出口空气温度预测研究[J]. 太阳能, 2016(9): 54-59.
MENG S S, ZHENG J, WU H.Study on prediction of outlet air temperature of dish solar collector[J]. Solar energy, 2016(9): 54-59.
[36] 朱正林, 刘权, 张欢. 基于优化广义回归神经网络的碟式太阳能温度预测研究[J]. 南京工程学院学报(自然科学版), 2020, 18(1): 1-5.
ZHU Z L, LIU Q, ZHANG H.Prediction of dish solar temperature based on optimized generalized regression neural network[J]. Journal of Nanjing Institute of Technology (natural science edition), 2020, 18(1): 1-5.

基金

国家重点研发计划(2021YFE0118000); 国家自然科学基金(41975031; 42175086); 广东省气候变化与自然灾害研究重点实验室(2020B1212060025)

PDF(1222 KB)

Accesses

Citation

Detail

段落导航
相关文章

/