质子交换膜燃料电池催化剂金属氧化物载体研究进展

徐广英, 梁思哲, 曾蓉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 467-475.

PDF(2848 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2848 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 467-475. DOI: 10.19912/j.0254-0096.tynxb.2022-0297

质子交换膜燃料电池催化剂金属氧化物载体研究进展

  • 徐广英1~3, 梁思哲1~3, 曾蓉1~3
作者信息 +

RESEARCH PROGRESS OF METAL OXIDE SUPPORTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS CATALYSTS

  • Xu Guangying1-3, Liang Sizhe1-3, Zeng Rong1-3
Author information +
文章历史 +

摘要

金属氧化物来源丰富,价格低廉,具有优异的稳定性、耐电化学腐蚀性,并且与贵金属纳米颗粒之间相互作用强,是燃料电池催化剂非碳载体研究的重要方向。本文主要介绍了几种金属氧化物载体在燃料电池催化剂中的研究进展和应用,分析了不同载体的优势与不足。研究表明杂原子掺杂金属氧化物和碳复合金属氧化物作为催化剂载体能有效提高催化剂的综合性能。最后展望了燃料电池催化剂金属氧化物载体的发展趋势。

Abstract

Oneimportant research work on non-carbon support for fuel cell catalyst focuses onmetal oxides, which are low cost with abundant sources, due to their excellentstability, electrochemical corrosion resistance and the strong interactionbetween metal oxides and precious metal nano-particles. In this review, theresearch progress and application of several metal oxides as supports for fuelcell catalysts were introduced, and the advantages and disadvantages ofdifferent supports were analyzed. The research showed that heteroatom dopedmetal oxide and carbon composite with metal oxide as the catalyst support caneffectively improve the overall performance of the catalysts. Finally, theprospection of fuel cell catalyst support of metal oxides was proposed.

关键词

质子交换膜燃料电池 / 催化剂 / 催化剂载体 / 纳米复合材料 / 金属氧化物

Key words

proton exchange membrane fuel cells / catalysts / catalyst supports / nanocomposites / metal oxides

引用本文

导出引用
徐广英, 梁思哲, 曾蓉. 质子交换膜燃料电池催化剂金属氧化物载体研究进展[J]. 太阳能学报. 2022, 43(6): 467-475 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0297
Xu Guangying, Liang Sizhe, Zeng Rong. RESEARCH PROGRESS OF METAL OXIDE SUPPORTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS CATALYSTS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 467-475 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0297
中图分类号: TM911.4   

参考文献

[1] 王诚, 王树博, 张剑波, 等. 车用质子交换膜燃料电池材料部件[J]. 化学进展, 2015, 27(2): 310-320.
WANG C, WANG S B, ZHANG J B, et al.Automotive proton exchange membrane fuel cell material components[J]. Chemical progress, 2015, 27(2): 310-320.
[2] CASTANHEIRA L, SILVA W O, LIMA F H B, et al. Carbon corrosion in proton-exchange membrane fuel cells: effect of the carbon structure, the degradation protocol, and the gas atmosphere[J]. ACS catalysis, 2015, 5(4): 2184-2194.
[3] SNEED B T, Cullen D A, REEVES K S, et al.3D analysis of fuel cell electrocatalyst degradation on alternate carbon supports[J]. ACS applied materials & interfaces, 2017, 9(35): 29839-29848.
[4] 程年才, 木士春, 潘牧, 等. 质子交换膜燃料电池催化剂的耐久性研究[J]. 电池工业, 2007, 12(3): 209-211.
CHENG N C, MU S C, PAN M, et al.Study on the durability of proton exchange membrane fuel cell catalyst[J]. Battery industry, 2007, 12(3): 209-211.
[5] WANG X X, TAN Z H, ZENG M, et al.Carbon nanocages: a new support material for Pt catalyst with remarkably high durability[J]. Scientific reports, 2014, 4(1): 4437-4447.
[6] WANG J, YIN G, SHAO Y, et al.Effect of carbon black support corrosion on the durability of Pt/C catalyst[J]. Journal of power sources, 2007, 171(2): 331-339.
[7] COLOMA F, SEPULVEDA-ESCRIBANO A, FIERRO J L G, et al. Preparation of platinum supported on pregraphitized carbon blacks[J]. Langmuir, 1994, 10(3): 750-755.
[8] KREITMEIER S, WOKAUN A, BÜCHI F N. Local catalyst support degradation during polymer electrolyte fuel cell start-up and shutdown[J]. Journal of the electrochemical society, 2012, 159(11): F787-F793.
[9] REISER C A, BREGOLI L, PATTERSON T W, et al.A reverse-current decay mechanism for fuel cells[J]. Electrochemical and solid-state letters, 2005, 8(6): A273-A276.
[10] SHIM J, LEE C-R, LEE H-K, et al.Electrochemical characteristics of Pt-WO3/C and Pt-TiO2/C electrocatalysts in a polymer electrolyte fuel cell[J]. Journal of power sources, 2001, 102(1-2): 172-177.
[11] ANTOLINI E, GONZALEZ E R.Ceramic materials as supports for low-temperature fuel cell catalysts[J]. Solid state ionics, 2009, 180(9-10): 746-763.
[12] ZHANG Z, LIU J, GU J, et al.An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells[J]. Energy & environmental science, 2014, 7(8): 2535-2558.
[13] JIA Q, GHOSHAL S, LI J, et al.Metal and metal oxide interactions and their catalytic consequences for oxygen reduction reaction[J]. Journal of the american chemical society, 2017, 139(23): 7893-7903.
[14] SIRACUSANO S, STASSI A, MODICA E, et al.Preparation and characterisation of Ti oxide based catalyst supports for low temperature fuel cells[J]. International journal of hydrogen energy, 2013, 38(26): 11600-11608.
[15] CHATURVEDI A, KUNDU P P.Synthesis of Co-Fe nanoparticle supported on titanium oxide-nanotubes (TiO2-NTs) as enhanced oxygen reduction reaction electrocatalyst[J]. Materials today: proceedings, 2021, 45(16): 5518-5522.
[16] HUANG S-Y, GANESAN P, POPOV B N.Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell[J]. Applied catalysis B: environmental, 2011, 102(1-2): 71-77.
[17] MIRSHEKARI G R, RICE C A.Effects of support particle size and Pt content on catalytic activity and durability of Pt/TiO2 catalyst for oxygen reduction reaction in proton exchange membrane fuel cells environment[J]. Journal of power sources, 2018, 396: 606-614.
[18] HAYDEN B E, MALEVICH D V, PLETCHER D, et al.Electrode coatings from sprayed titanium dioxide nanoparticles-behaviour in NaOH solutions[J]. Electrochemistry communications, 2001, 3(8): 390-394.
[19] RUIZ-CAMACHO B, MARTÍNEZ-ÁLVAREZ O, RODRÍGUEZ-SANTOYO H, et al. Pt/C and Pt/TiO2-C electrocatalysts prepared by chemical vapor deposition with high tolerance to alcohols in oxygen reduction reaction[J]. Journal of electroanalytical chemistry, 2014, 725: 19-24.
[20] BHARTI A, MULIANKEEZHU S, CHERUVALLY G.Pt-TiO2 nanocomposites as catalysts for proton exchange membrane fuel cell: prominent effects of synthesis medium pH[J]. Journal of nanoscience nanotechnology, 2018, 18(4): 2781-2789.
[21] ALIPOUR M E R, VANKOVA S K, MONTEVERDE V A H A, et al. Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction[J]. Applied catalysis B: environmental, 2017, 201: 419-429.
[22] BEAUGER C, TESTUT L, BERTHON-FABRY S, et al.Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: a comparative study of Nb, V and Ta dopants[J]. Microporous and mesoporous materials, 2016, 232: 109-118.
[23] SUN S H, ZHANG G X, SUN X L, et al.Highly stable and active Pt/Nb-TiO2 carbon-free electrocatalyst for proton exchange membrane fuel cells[J]. Journal of nanotechnology, 2012, 2012: 271-278.
[24] HE C, SANKARASUBRAMANIAN S, MATANOVIC I, et al.Understanding the oxygen reduction reaction Activity and oxidative stability of Pt supported on Nb-Doped TiO2[J]. ChemSusChem, 2019, 12(15): 3468-3480.
[25] HUSSAIN S, ERIKSON H, KONGI N, et al.Platinum sputtered on Nb-doped TiO2 films prepared by ald: highly active and durable carbon-free ORR electrocatalyst[J]. Journal of the Electrochemical Society, 2020, 167(16): 164505-164513.
[26] MONTERO-OCAMPO C, GARCIA J, ESTRADA E A.Comparison of TiO2 and TiO2-CNT as cathode catalyst supports for ORR[J]. International journal of electrochemical science, 2013, 8(12): 12780-12800.
[27] PROCH S, YOSHINO S, GUNJISHIMA I, et al.Acetylene-treated titania nanotube arrays(TNAs) as support for oxygen reduction reaction (ORR) platinum thin film catalysts[J]. Electrocatalysis, 2017, 8(4): 351-365.
[28] JEON Y, JI Y, CHO Y I, et al.Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst[J]. ACS nano, 2018, 12(7): 6819-6829.
[29] COMS F D, LIU H, OWEJAN J E.Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions[J]. Electrochemical Society transactions, 2008, 16(2): 1735-1747.
[30] TROGADAS P, PARRONDO J, RAMANI V.Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger[J]. Electrochemical and solid state letters, 2008, 11(7): B113-B116.
[31] TROGADAS P, PARRONDO J, RAMANI V.Degradation mitigation in pem fuel cells using metal nanoparticle and metal oxide additives[J]. ACS symposium series, 2010, 1034: 187-207.
[32] TROGADAS P, PARRONDO J, RAMANI V.Platinum supported on CeO2 effectively scavenges free radicals within the electrolyte of an operating fuel cell[J]. Chemical communications, 2011, 47(41): 11549-11551.
[33] WANG L, ADVANI S G, PRASAD A K.Self-Hydrating Pt/CeO2-Nafion composite membrane for improved durability and performance[J]. ECS electrochemistry letters, 2014, 3(5): F30-F32.
[34] PILGER F, TESTINO A, LUCCHINI M A, et al.One-pot polyol synthesis of Pt/CeO2 and Au/CeO2 nanopowders as catalysts for CO oxidation[J]. Journal of nanoscience nanotechnology, 2015, 15(5): 3530-3539.
[35] YOON S, HA H, KIM J, et al.Influence of the Pt size and CeO2 morphology at the Pt-CeO2 interface in CO oxidation[J]. Journal of materials chemistry A, 2021, 9(46): 26381-26390.
[36] XU F, WANG D, SA B, et al.One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC[J]. International journal of hydrogen energy, 2017, 42(18): 13011-13019.
[37] LI Y, ZHANG X, WANG S, et al.Durable platinum-based electrocatalyst supported by multiwall carbon nanotubes modified with CeO2[J]. ChemElectroChem, 2018, 5(17): 2442-2448.
[38] SEDIGHI M, ROSTAMI A A.Electrodeposition of Pt/CeO2/MWCNT as hydrogen peroxide scavenger for chemical degradation mitigation of nafion membrane[J]. Journal of the Electrochemical Society, 2019, 166(10): D435-D442.
[39] TAN N, LEI Y H, HUO D, et al.Fabricating Pt/CeO2/N-C ternary ORR electrocatalysts with extremely low platinum content and excellent performance[J]. Journal of materials science, 2022, 57(1): 538-552.
[40] DAHLE J T, LIVI K, ARAI Y.Effects of pH and phosphate on CeO2 nanoparticle dissolution[J]. Chemosphere, 2015, 119: 1365-1371.
[41] POULSEN M G, LARSEN M J, ANDERSEN S M.Improved durability of proton exchange membrane fuel cells by introducing Sn (IV) oxide into electrodes using an ion exchange method[J]. Journal of power sources, 2017, 343: 174-182.
[42] ANDERSEN S M, NØRGAARD C F, LARSEN M J, et al. Tin dioxide as an effective antioxidant for proton exchange membrane fuel cells[J]. Journal of power sources, 2015, 273: 158-161.
[43] MATSUI T, FUJIWARA K, OKANISHI T, et al.Electrochemical oxidation of CO over tin oxide supported platinum catalysts[J]. Journal of power sources, 2006, 155(2): 152-156.
[44] HUANG H, HAYES E T, GIANOLIO D, et al.Role of SnO2 in the bifunctional mechanism of CO oxidation at Pt-SnO2 electrocatalysts[J]. ChemElectroChem, 2021, 8(13): 2572-2582.
[45] DOU M L, HOU M, LIANG D, et al.SnO2 nanocluster supported Pt catalyst with high stability for proton exchange membrane fuel cells[J]. Electrochimica acta, 2013, 92: 468-473.
[46] ZHANG P, HUANG S-Y, POPOV B N.Mesoporous tin oxide as an oxidation-resistant catalyst support for proton exchange embrane fuel cells[J]. Journal of the Electrochemical Society, 2010, 157(8): B1163-B1173.
[47] KAMIUCHI N, MATSUI T, KIKUCHI R, et al.Nanoscopic observation of strong chemical interaction between Pt and tin oxide[J]. The journal of physical chemistry C, 2007, 111(44): 16470-16476.
[48] RABIS A, BINNINGER T, FABBRI E, et al.Impact of support physicochemical properties on the CO oxidation and the oxygen reduction reaction activity of Pt/SnO2 electrocatalysts[J]. The journal of physical chemistry C, 2018, 122(9): 4739-4746.
[49] DAIO T, STAYKOV A, GUO L, et al.Lattice strain mapping of platinum nanoparticles on carbon and sno2 supports[J]. Scientific reports, 2015, 5: 13126-13135.
[50] GOKULAKRISHNAN V, PARTHIBAN S, JEGANATHAN K, et al.Investigations on the structural, optical and electrical properties of Nb-doped SnO2 thin films[J]. Journal of materials science, 2011, 46(16): 5553-5558.
[51] SZCZUKO D, WERNER J, OSWALD S, et al.XPS investigations of surface segregation of doping elements in SnO2[J]. Applied surface science, 2001, 179(1-4): 301-306.
[52] OZOUF G, BEAUGER C.Niobium-and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells[J]. Journal of materials science, 2016, 51(11): 5305-5320.
[53] MOHANTA P K, GLÖKLER C, ARENAS A O, et al. Sb doped SnO2 as a stable cathode catalyst support for low temperature polymer electrolyte membrane fuel cell[J]. International journal of hydrogen energy, 2017, 42(46): 27950-27961.
[54] OZOUF G, COGNARD G, MAILLARD F, et al.Sb-doped SnO2 aerogels based catalysts for proton exchange membrane fuel cells: Pt deposition routes, electrocatalytic activity and durability[J]. Journal of the Electrochemical Society, 2018, 165(6): F3036-F3044.
[55] JIMENEZ-MORALES I, HAIDAR F, CAVALIERE S, et al.Strong interaction between platinum nanoparticles and tantalum-doped tin oxide nanofibers and its activation and stabilization effects for oxygen reduction reaction[J]. ACS catalysis, 2020, 10(18): 10399-10411.
[56] ZHANG N, ZHANG S, DU C Y, et al.Pt/Tin oxide/carbon nanocomposites as promising oxygen reduction electrocatalyst with improved stability and activity[J]. Electrochimica acta, 2014, 117: 413-419.
[57] YANG Z Y, CHENG J M, FANG B Z, et al.Ordered SnO2@C flake array as catalyst support for improved electrocatalytic activity and cathode durability in PEMFCs[J]. Nanomaterials, 2020, 10(12): 2412-2426.
[58] HOBBS B, TSEUNG A.High performance, platinum activated tungsten oxide fuel cell electrodes[J]. Nature, 1969, 222(5193): 556-558.
[59] WANG J, WANG Z, LIU C-J.Enhanced activity for CO oxidation over WO3 nanolamella supported Pt catalyst[J]. ACS applied materials & interfaces, 2014, 6(15): 12860-12867.
[60] 刘明义, 何源清, 毛宗强, 等. 质子交换膜燃料电池阳极电催化剂CO中毒机理[J]. 电源技术, 2002(S1): 247-249.
LIU M Y,HE Y Q, MAO Z Q, et al.Mechanism of CO poisoning in anode electrocatalyst of proton exchange membrane fuel cell[J]. Power technology, 2002(S1): 247-249.
[61] SHEN P, TSEUNG A.Anodic oxidation of methanol on Pt/WO3 in acidic media[J]. Journal of the Electrochemical Society, 1994, 141(11): 3082-3090.
[62] LIU Y, SHRESTHA S, MUSTAIN W E.Synthesis of nanosize tungsten oxide and its evaluation as an electrocatalyst support for oxygen reduction in acid media[J]. ACS catalysis, 2012, 2(3): 456-463.
[63] LIU L J, ZHANG Y, AIQIN W, et al.Mesoporous WO3 supported Pt catalyst for hydrogenolysis of glycerol to 1, 3-propanediol[J]. Chinese journal of catalysis, 2012, 33(7-8): 1257-1261.
[64] KUMAR S, BHANGE S N, SONI R, et al.WO3 nanorods bearing interconnected pt nanoparticle units as an activity modulated and corrosion resistant carbon-free system for PEMFCs[J]. ACS applied energy materials, 2020, 3(2): 1908-1921.
[65] RAJESH B, KARTHIK V, KARTHIKEYAN S, et al.Pt-WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells[J]. Fuel, 2002, 81(17): 2177-2190.
[66] REHMAN A U, HOSSAIN S S, RAHMAN S U, et al.WO3 modification effects on Pt-Pd/WO3-OMC electrocatalysts for formic acid oxidation[J]. Applied catalysis A: general, 2014, 482(28): 309-317.
[67] MOBARAKEH M D.Synthesis of electrospun carbon nanofiber/WO3 supported Pt, Pt/Pd and Pt/Ru catalysts for fuel cells[J]. Fibers and polymers, 2017, 18(1): 95-101.
[68] FENG Y, YAO R, ZHANG L.Electronic properties of nanocrystalline tin oxide dispersed in monolithic mesoporous silica[J]. Physica B: condensed matter, 2004, 350(4): 348-352.
[69] SWIDER K E, MERZBACHER C I, HAGANS P L, et al.Synthesis of ruthenium dioxide-titanium dioxide aerogels: redistribution of electrical properties on the nanoscale[J]. Chemistry of materials, 1997, 9(5): 1248-1255.
[70] MCKEOWN D A, HAGANS P L, CARETTE L P, et al.Structure of hydrous ruthenium oxides: implications for charge storage[J]. The journal of physical chemistry B, 1999, 103(23): 4825-4832.
[71] DMOWSKI W, EGAMI T, SWIDER-LYONS K E, et al. Local atomic structure and conduction mechanism of nanocrystalline hydrous RuO2 from X-ray scattering[J]. The journal of physical chemistry B, 2002, 106(49): 12677-12683.
[72] KUMAR A, RAMANI V K.RuO2-SiO2 mixed oxides as corrosion-resistant catalyst supports for polymer electrolyte fuel cells[J]. Applied catalysis B: environmental, 2013, 138: 43-50.
[73] VOLKOVA M G, STOROZHENKO V Y, GULYAEVA I A, et al.TiO2-SnO2 films: synthesis by low-temperature pyrolysis and electrophysical properties[J]. Materials today: proceedings, 2022, 52(2): 187-190.
[74] JASIM A, ALSALIHI S.Communication-platinum and tin oxide dispersed in a fluffy TiO2 nanolayer for electrocatalytic reduction of oxygen[J]. Journal of the Electrochemical Society, 2020, 167(11): 116526-116531.
[75] MA Y, CUI B, HE L, et al.A novel support for platinum electrocatalyst based on mesoporous carbon embedded with bimetallic SnTi oxide as a bifunctional electrocatalyst[J]. Journal of electroanalytical chemistry, 2019, 850: 113435-113446.
[76] LO C P, WANG G, KUMAR A, et al.TiO2-RuO2 electrocatalyst supports exhibit exceptional electrochemical stability[J]. Applied catalysis B: environmental, 2013, 140: 133-140.
[77] ZHOU C M, PENG F, WANG H, et al.Facile preparation of an excellent Pt/RuO2-MnO2/CNTs nanocatalyst for anodes of direct methanol fuel cells[J]. Fuel cells, 2011, 11(2): 301-308.

基金

国家重点研发计划(2021YFB4001301-2)

PDF(2848 KB)

Accesses

Citation

Detail

段落导航
相关文章

/