基于风速预测的风电场虚拟惯量协调控制技术

汪正军, 高静方, 赵冰, 丁亮, 曹扬

太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 138-143.

PDF(1887 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1887 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (10) : 138-143. DOI: 10.19912/j.0254-0096.tynxb.2022-0298

基于风速预测的风电场虚拟惯量协调控制技术

  • 汪正军, 高静方, 赵冰, 丁亮, 曹扬
作者信息 +

WIND FARM VIRTUAL INERTIA COORDINATED CONTROL TECHNOLOGY BASED ON WIND SPEED PREDICTION

  • Wang Zhengjun, Gao Jingfang, Zhao Bing, Ding Liang, Cao Yang
Author information +
文章历史 +

摘要

针对现有风电场虚拟惯量协调控制在风电机组调频辅助功率协调分配方面的研究,提出一种基于风速预测的风电场虚拟惯量响应场级协同分配策略,具体是通过经验模式分解(EMD)和BP神经网络训练风速时序序列获得风速时序模型,预测短时段内的风速,根据实时转速和预测风速计算惯量分配权重因子,根据频率变化计算全场惯量响应值,通过惯量分配权重因子结合变流器容量限值给单机分配惯量响应值。该控制策略成功应用于云南某148.5 MW风电场站级调频测试,验证了算法的有效性。

Abstract

According to the current research of wind farm virtual inertia coordinated control for wind turbine power distribution of frequency regulation, this paper proposed a virtual inertial coordinated-control power distribution strategy based on wind speed prediction. Specifically, a time-series wind speed model resulting through BP neural network training with time-series wind speed and empirical mode decomposition (EMD) , thereby the short period wind speed can be predicted. The calculation of inertia distribution weighting factor is based on both real-time rotor speed and predicted wind speed, meanwhile,the whole field inertia response value is calculated by frequency variation.The inertia response value of each wind turbine is allocated through the inertia distribution weighting factor and the capacity of each converter. The control strategy in this paper has been successfully applied on a 148.5 MW wind farm in Yunnan. On the basis of frequency modulation test results, the effectiveness of the algorithm has been verified.

关键词

风电场 / 虚拟惯量控制 / 频率响应 / 协调控制 / 风速预测

Key words

wind farm / virtual inertia control / frequency response / coordination control / wind speed prediction

引用本文

导出引用
汪正军, 高静方, 赵冰, 丁亮, 曹扬. 基于风速预测的风电场虚拟惯量协调控制技术[J]. 太阳能学报. 2022, 43(10): 138-143 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0298
Wang Zhengjun, Gao Jingfang, Zhao Bing, Ding Liang, Cao Yang. WIND FARM VIRTUAL INERTIA COORDINATED CONTROL TECHNOLOGY BASED ON WIND SPEED PREDICTION[J]. Acta Energiae Solaris Sinica. 2022, 43(10): 138-143 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0298
中图分类号: TM614   

参考文献

[1] 张祥宇. 变速风电机组的虚拟惯性与系统阻尼控制研究[D]. 保定: 华北电力大学, 2013.
ZHANG X Y.Virtual inertia and system damping control for variable speed wind turbines[D]. Baoding: North China Electric Power University, 2013.
[2] 李少林, 王伟胜, 张兴, 等. 风力发电对系统频率影响及虚拟惯量综合控制[J]. 电力系统自动化, 2019, 43(15): 64-70.
LI S L, WANG W S, ZHANG X, et al.Impact of wind power on power system frequency and combined virtual inertia control[J]. Automation of electric power system, 2019, 43(15): 64-70.
[3] 陈佳, 岑丽辉, 曹安康, 等. 一种考虑风力机实际大转动惯量的改进最优转矩法[J]. 太阳能学报, 2021, 42(6): 297-303.
CHEN J, CEN L H, CAO A K, et al.An improved optimal torque control of wind turbine considering actual large rotational inertia[J]. Acta energiae solaris sinica,2021, 42(6): 297-303.
[4] 丁磊, 尹善耀, 王同晓, 等. 考虑惯性调频的双馈风电机组主动转速保护控制策略[J]. 电力系统自动化, 2015, 39(24): 29-34, 95.
DING L, YI S Y, WANG T X, et al.Active rotor speed protection strategy for DFIG-based wind turbines with inertia control[J]. Automation of electric power system, 2015, 39(24): 29-34, 95.
[5] CONREY J F, WATSON R.Frequency response capability of full converter wind turbine generators in comparison to conventional generation[J]. IEEE transactions power systems, 2008, 23(2): 649-656.
[6] 何成明, 王洪涛, 孙华东, 等. 变速风电机组调频特性分析及风电场时序协同控制策略[J]. 电力系统自动化, 2013, 37(9): 1-6, 59.
HE C M, WANG H T, SUN H D, et al.Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm[J]. Automation of electric power system, 2013, 37(9): 1-6, 59.
[7] 陈宇航, 王刚, 侍乔明, 等. 一种新型风电场虚拟惯量协同控制策略[J]. 电力系统自动化, 2015, 39(5): 27-33.
CHEN Y H, WANG G, SHI Q M, et al.A new coordinated virtual inertia control strategy for wind farms[J]. Automation of electric power system,2015, 39(5): 27-33.
[8] 侍乔明, 王刚, 李海英, 等. 考虑调频能力的风电场虚拟惯量多机协同控制策略[J]. 电网技术, 2019, 43(11): 4005-4017.
SHI Q M, WANG G, LI H Y, et al.Coordinated virtual control strategy of multiple wind turbines in wind farms considering frequency regulation capability[J]. Power system technology, 2019, 43(11): 4005-4017.
[9] 刘辉, 田红旗, 李燕飞. 基于小波分析法与神经网络法的非平稳风速信号短期预测优化算法[J]. 中南大学学报(自然科学版), 2011, 42(9): 2704-2711.
LIU H, TIAN H Q, LI Y F.Short-term forecasting optimization algorithm for unsteady wind speed signal based on wavelet analysis method and neutral networks method[J]. Journal of Central South University(science and technology), 2011, 42(9): 2704-2711.
[10] 勾海芝, 赵征, 夏子涵. 基于经验模式分解的神经网络组合风速预测研究[J]. 电力科学与工程, 2017, 33(10): 62-67.
GOU H Z, ZHAO Z, XIA Z H.Research on neural network combined wind speed prediction based on empirical mode decomposition[J]. Electric power science and engineering, 2017, 33(10): 62-67.

基金

国家重点研发计划(2018YFB1503102)

PDF(1887 KB)

Accesses

Citation

Detail

段落导航
相关文章

/