硅异质结太阳电池的TiCxOy电子选择性接触研究

孙彪, 丁阳, 黄志平, 陈静伟, 韦德远, 许颖

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 141-146.

PDF(1975 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1975 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 141-146. DOI: 10.19912/j.0254-0096.tynxb.2022-0299

硅异质结太阳电池的TiCxOy电子选择性接触研究

  • 孙彪1, 丁阳1, 黄志平1,2, 陈静伟1, 韦德远3, 许颖1
作者信息 +

RESEARCH ON TiCxOy ELECTRON-SELETIVE CONTACTS FOR SILLICON HETROJUCTION SOLAR CELLS

  • Sun Biao1, Ding Yang1, Huang Zhiping1,2, Chen Jingwei1, Wei Deyuan3, Xu Ying1
Author information +
文章历史 +

摘要

报道一种新型的免掺杂电子传输材料——TiCxOy,具有非晶相为主少量晶化相的混合相结构,约4.1 eV的低功函数和2.63 eV的宽带隙,可实现对电子的零势垒传输和对空穴的高势垒(1.64 eV)阻挡;TiCxOy/n型硅异质接触可获得17.74 mΩ·cm2的低接触电阻率,可实现对电子的选择性输运功能。TiCxOy薄膜用作全背面n型硅异质结电池的电子传输层,可大幅提高电池的开路电压和填充因子,最优电池的绝对效率提高3%。

Abstract

This article reports TiCxOy as a novel dopant-free electron-transport material. TiCxOy is a mixed-phase material which is composed of the dominant amorphous phase and a small proportion of crystalline phase. TiCxOy material has a low work function of about 4.1 eV and a wide bandgap of 2.63 eV, realizing 0 eV energy barrier for electrons transport and high blocking energy barrier of 1.64 eV for holes transport. A low contract resistivity of 17.74 mΩ·cm2 has been realized for TiCxOy/n-Si heterocontact, realizing the function of electron-selective transport. TiCxOy thin film was applied for the full-area, rear-side electron-transport layer of n-type silicon heterojunction solar cell. As a result, the introduction of TiCxOy thin film significantly increases open-circuit voltages and fill factors of solar cells, and the absolute conversation efficiency of champion solar cell is promoted by 3%.

关键词

太阳电池 / 硅异质结 / 免掺杂 / 电子选择性接触

Key words

solar cells / silicon heterojunction / dopant-free / electron-selective contact

引用本文

导出引用
孙彪, 丁阳, 黄志平, 陈静伟, 韦德远, 许颖. 硅异质结太阳电池的TiCxOy电子选择性接触研究[J]. 太阳能学报. 2023, 44(7): 141-146 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0299
Sun Biao, Ding Yang, Huang Zhiping, Chen Jingwei, Wei Deyuan, Xu Ying. RESEARCH ON TiCxOy ELECTRON-SELETIVE CONTACTS FOR SILLICON HETROJUCTION SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 141-146 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0299
中图分类号: TM615   

参考文献

[1] ARANTEGUI R L, JÄGER-WALDAU A. Photovoltaics and wind status in the European Union after the Paris Agreement[J]. Renewable and sustainable energy reviews, 2018, 81(P2): 2460-2471.
[2] LAUERMANN T, LÜDER T, SCHOLZ S, et al. Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes[C]//2010 35th IEEE Photovoltaic Specialists Conference,Honolulu, HI, USA, 2010.
[3] BULLOCK J, HETTICK M, GEISSBÜHLER J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature energy, 2016, 1(3): 1-7.
[4] KRÜGENER J, HAASE F, RIENÄCKER M, et al. Improvement of the SRH bulk lifetime upon formation of n-type POLO junctions for 25% efficient Si solar cells[J]. Solar energy materials and solar cells, 2017, 173: 85-91.
[5] WANG Q Q, WU W P, LI Y P, et al.Impact of boron doping on electrical performance and efficiency of n-TOPCon solar cell[J]. Solar energy, 2021, 227: 273-291.
[6] RU X N, QU M H, WANG J Q, et al.25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643.
[7] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报,2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[8] NAYAK P K, MAHESH S, SNAITH H J, et al.Photovoltaic solar cell technologies: analysing the state of the art[J]. Nature reviews materials, 2019, 4(4): 269-285.
[9] 郭印池, 胡宏勋. 高效率硅太阳电池的性能及理论分析[J]. 太阳能学报, 1983, 4(3): 251-258.
GUO Y C, HU H X.Performance and theoretical analysis of high-efficiency silicon solar cells[J]. Acta energiae solaris sinica, 1983, 4(3): 251-258.
[10] IMRAN H, ABDOLKADER T M, BUTT N Z.Carrier-selective NiO/Si and TiO2/Si contacts for silicon heterojunction solar cells[J]. IEEE transactions on electron devices, 2016, 63(9): 3584-3590.
[11] KIM S K, SEOK H J, KIM D H, et al.Comparison of NiOx thin film deposited by spin-coating or thermal evaporation for application as a hole transport layer of perovskite solar cells[J]. RSC advances, 2020, 10(71): 43847-43852.
[12] TONG J N, WAN Y M, CUI J, et al.Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells[J]. Applied surface science, 2017, 423: 139-146.
[13] BULLOCK J, CUEVAS A, ALLEN T, et al.Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells[J]. Applied physics letters, 2014, 105(23): 232109.
[14] ALI H, KOUL S, GREGORY G, et al.Thermal stability of hole-selective tungsten oxide: in situ transmission electron microscopy study[J]. Scientific reports, 2018, 8(1): 1-5.
[15] MA G L, DU R, CAI Y N, et al.Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides[J]. Solar energy materials and solar cells, 2019, 193: 163-168.
[16] BULLOCK J, WAN Y M, XU Z R, et al.Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS energy letters, 2018, 3(3): 508-513.
[17] WANG W J, HE J, YAN D, et al.21.3%-efficient n-type silicon solar cell with a full area rear TiOx/LiF/Al electron-selective contact[J]. Solar energy materials and solar cells, 2020, 206: 110291.
[18] CHO J, MELSKENS J, PAYO M R, et al.Performance and thermal stability of an a-Si: H/TiOx/Yb stack as an electron-selective contact in silicon heterojunction solar cells[J]. ACS applied energy materials, 2019, 2(2): 1393-1404.
[19] WAN Y M, KARUTURI S K, SAMUNDSETT C, et al.Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction[J]. ACS energy letters, 2018, 3(1): 125-131.
[20] LEE Y H, SONG H E, KIM K H, et al.Investigation of surface reactions in metal oxide on Si for efficient heterojunction Si solar cells[J]. APL materials, 2019, 7(7): 071106.
[21] WANG Z L, YANG Y, ZHANG L F, et al.Modulation-doped ZnO as high performance electron-selective layer for efficient silicon heterojunction solar cells[J]. Nano energy, 2018, 54: 99-105.
[22] MACCO B, BLACK L E, MELSKENS J, et al.Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells[J]. Solar energy materials and solar cells, 2018, 184: 98-104.
[23] LEE S W, DAGA A, XU Z K, et al.Characterization of MOCVD grown optical coatings of Sc2O3 and Ta-doped SnO2[J]. Materials science and engineering B, 2003, 99(1-3): 134-137.
[24] ZHONG S H, DREON J, JEANGROS Q, et al.Mitigating plasmonic absorption losses at rear electrodes in high-efficiency silicon solar cells using dopant-free contact stacks[J]. Advanced functional materials, 2020, 30(5): 1907840.
[25] 陈筑, 徐林. 晶体硅太阳电池接触电阻测量方法[J]. 太阳能学报, 2014, 35(5): 750-755.
CHEN Z, XU L.Measurement method of contact resistance of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2014, 35(5): 750-755.
[26] QI Q, ZHANG W Z, SHI L Q, et al.Preparation of single-crystal TiC (111) by radio frequency magnetron sputtering at low temperature[J]. Thin solid films, 2012, 520(23): 6882-6887.
[27] MELSKENS J, BAS W H, MACCO B, et al.Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects[J]. IEEE journal of photovoltaics, 2018, 8(2): 373-388.
[28] WAN Y M, SAMUNDSETT C, BULLOCK J, et al.Magnesium fluoride electron-selective contacts for crystalline silicon solar cells[J]. ACS applied materials & interfaces, 2016, 8(23): 14671-14677.
[29] TITOVA V, SCHMIDT J.Selectivity of TiOx-based electron-selective contacts on n-type crystalline silicon and solar cell efficiency potential[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(9): 2100246.
[30] JI W B, ALLEN T, YANG X B, et al.Polymeric electron-selective contact for crystalline silicon solar cells with an efficiency exceeding 19%[J]. ACS energy letters, 2020, 5(3): 897-902.

基金

河北省重点研发计划(20314305D); 教育部“春晖计划”合作科研项目(2019); 国家重点研发计划(2018YFB1500500); 国家自然科学基金青年基金(61704045)

PDF(1975 KB)

Accesses

Citation

Detail

段落导航
相关文章

/