1. College of Physical Science and Technology, Hebei University, Baoding 071002, China; 2. Faculty of Information Engineering, Quzhou College of Technology, Quzhou 324000, China; 3. College of Science, Zhejiang University of Technology, Hangzhou 310014, China
This article reports TiCxOy as a novel dopant-free electron-transport material. TiCxOy is a mixed-phase material which is composed of the dominant amorphous phase and a small proportion of crystalline phase. TiCxOy material has a low work function of about 4.1 eV and a wide bandgap of 2.63 eV, realizing 0 eV energy barrier for electrons transport and high blocking energy barrier of 1.64 eV for holes transport. A low contract resistivity of 17.74 mΩ·cm2 has been realized for TiCxOy/n-Si heterocontact, realizing the function of electron-selective transport. TiCxOy thin film was applied for the full-area, rear-side electron-transport layer of n-type silicon heterojunction solar cell. As a result, the introduction of TiCxOy thin film significantly increases open-circuit voltages and fill factors of solar cells, and the absolute conversation efficiency of champion solar cell is promoted by 3%.
Sun Biao, Ding Yang, Huang Zhiping, Chen Jingwei, Wei Deyuan, Xu Ying.
RESEARCH ON TiCxOy ELECTRON-SELETIVE CONTACTS FOR SILLICON HETROJUCTION SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 141-146 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0299
中图分类号:
TM615
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ARANTEGUI R L, JÄGER-WALDAU A. Photovoltaics and wind status in the European Union after the Paris Agreement[J]. Renewable and sustainable energy reviews, 2018, 81(P2): 2460-2471. [2] LAUERMANN T, LÜDER T, SCHOLZ S, et al. Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes[C]//2010 35th IEEE Photovoltaic Specialists Conference,Honolulu, HI, USA, 2010. [3] BULLOCK J, HETTICK M, GEISSBÜHLER J, et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts[J]. Nature energy, 2016, 1(3): 1-7. [4] KRÜGENER J, HAASE F, RIENÄCKER M, et al. Improvement of the SRH bulk lifetime upon formation of n-type POLO junctions for 25% efficient Si solar cells[J]. Solar energy materials and solar cells, 2017, 173: 85-91. [5] WANG Q Q, WU W P, LI Y P, et al.Impact of boron doping on electrical performance and efficiency of n-TOPCon solar cell[J]. Solar energy, 2021, 227: 273-291. [6] RU X N, QU M H, WANG J Q, et al.25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers[J]. Solar energy materials and solar cells, 2020, 215: 110643. [7] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报,2021, 42(10): 49-60. ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60. [8] NAYAK P K, MAHESH S, SNAITH H J, et al.Photovoltaic solar cell technologies: analysing the state of the art[J]. Nature reviews materials, 2019, 4(4): 269-285. [9] 郭印池, 胡宏勋. 高效率硅太阳电池的性能及理论分析[J]. 太阳能学报, 1983, 4(3): 251-258. GUO Y C, HU H X.Performance and theoretical analysis of high-efficiency silicon solar cells[J]. Acta energiae solaris sinica, 1983, 4(3): 251-258. [10] IMRAN H, ABDOLKADER T M, BUTT N Z.Carrier-selective NiO/Si and TiO2/Si contacts for silicon heterojunction solar cells[J]. IEEE transactions on electron devices, 2016, 63(9): 3584-3590. [11] KIM S K, SEOK H J, KIM D H, et al.Comparison of NiOx thin film deposited by spin-coating or thermal evaporation for application as a hole transport layer of perovskite solar cells[J]. RSC advances, 2020, 10(71): 43847-43852. [12] TONG J N, WAN Y M, CUI J, et al.Solution-processed molybdenum oxide for hole-selective contacts on crystalline silicon solar cells[J]. Applied surface science, 2017, 423: 139-146. [13] BULLOCK J, CUEVAS A, ALLEN T, et al.Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells[J]. Applied physics letters, 2014, 105(23): 232109. [14] ALI H, KOUL S, GREGORY G, et al.Thermal stability of hole-selective tungsten oxide: in situ transmission electron microscopy study[J]. Scientific reports, 2018, 8(1): 1-5. [15] MA G L, DU R, CAI Y N, et al.Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides[J]. Solar energy materials and solar cells, 2019, 193: 163-168. [16] BULLOCK J, WAN Y M, XU Z R, et al.Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%[J]. ACS energy letters, 2018, 3(3): 508-513. [17] WANG W J, HE J, YAN D, et al.21.3%-efficient n-type silicon solar cell with a full area rear TiOx/LiF/Al electron-selective contact[J]. Solar energy materials and solar cells, 2020, 206: 110291. [18] CHO J, MELSKENS J, PAYO M R, et al.Performance and thermal stability of an a-Si: H/TiOx/Yb stack as an electron-selective contact in silicon heterojunction solar cells[J]. ACS applied energy materials, 2019, 2(2): 1393-1404. [19] WAN Y M, KARUTURI S K, SAMUNDSETT C, et al.Tantalum oxide electron-selective heterocontacts for silicon photovoltaics and photoelectrochemical water reduction[J]. ACS energy letters, 2018, 3(1): 125-131. [20] LEE Y H, SONG H E, KIM K H, et al.Investigation of surface reactions in metal oxide on Si for efficient heterojunction Si solar cells[J]. APL materials, 2019, 7(7): 071106. [21] WANG Z L, YANG Y, ZHANG L F, et al.Modulation-doped ZnO as high performance electron-selective layer for efficient silicon heterojunction solar cells[J]. Nano energy, 2018, 54: 99-105. [22] MACCO B, BLACK L E, MELSKENS J, et al.Atomic-layer deposited Nb2O5 as transparent passivating electron contact for c-Si solar cells[J]. Solar energy materials and solar cells, 2018, 184: 98-104. [23] LEE S W, DAGA A, XU Z K, et al.Characterization of MOCVD grown optical coatings of Sc2O3 and Ta-doped SnO2[J]. Materials science and engineering B, 2003, 99(1-3): 134-137. [24] ZHONG S H, DREON J, JEANGROS Q, et al.Mitigating plasmonic absorption losses at rear electrodes in high-efficiency silicon solar cells using dopant-free contact stacks[J]. Advanced functional materials, 2020, 30(5): 1907840. [25] 陈筑, 徐林. 晶体硅太阳电池接触电阻测量方法[J]. 太阳能学报, 2014, 35(5): 750-755. CHEN Z, XU L.Measurement method of contact resistance of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2014, 35(5): 750-755. [26] QI Q, ZHANG W Z, SHI L Q, et al.Preparation of single-crystal TiC (111) by radio frequency magnetron sputtering at low temperature[J]. Thin solid films, 2012, 520(23): 6882-6887. [27] MELSKENS J, BAS W H, MACCO B, et al.Passivating contacts for crystalline silicon solar cells: from concepts and materials to prospects[J]. IEEE journal of photovoltaics, 2018, 8(2): 373-388. [28] WAN Y M, SAMUNDSETT C, BULLOCK J, et al.Magnesium fluoride electron-selective contacts for crystalline silicon solar cells[J]. ACS applied materials & interfaces, 2016, 8(23): 14671-14677. [29] TITOVA V, SCHMIDT J.Selectivity of TiOx-based electron-selective contacts on n-type crystalline silicon and solar cell efficiency potential[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(9): 2100246. [30] JI W B, ALLEN T, YANG X B, et al.Polymeric electron-selective contact for crystalline silicon solar cells with an efficiency exceeding 19%[J]. ACS energy letters, 2020, 5(3): 897-902.