为提高梯次利用电池可重构储能系统的安全性,提出一种梯次利用电池可重构储能系统电池的多级在线安全评估方法。该方法采用可重构储能系统中电池单体、模组的电压、温度等实时监测数据,建立电池及模组的安全评估模型,通过熵权-TOPSIS法对电池电热安全进行量化评估。安全评估方法可在线量化采用不同厂家、批次、种类退役动力电池可重构储能系统的安全状态,依据评估结果实现模组和单体的二级安全预警,完成模组级和单体级的安全风险定位。依据在线安全评估结果,可对梯次利用电池储能系统及时进行拓扑重构、能量调度和温度管理,有效提升系统的安全性,促进梯次利用电池在储能系统中的规模化应用,符合梯次利用储能系统大规模推广建设的现实需要。
Abstract
In order to improve the safety of secondary batteries reconfigurable energy storage system, a corresponding multi-level online safety evaluation method is proposed. Based on the voltage and temperature data of the battery monomer and module monitored in real time, this method establishes the safety evaluation model of the battery and module, and quantitatively evaluates the battery electrothermal safety by the entropy weight TOPSIS method. The safety evaluation method can quantify the safety status of the reconfigurable energy storage system using retired power batteries from different manufacturers, batches or types online, so that it can realize the secondary safety early warning of modules and monomers according to the evaluation results, and complete the safety risk positioning of modules and monomers. According to the online safety evaluation results, the topology reconstruction, energy scheduling and temperature management of the secondary batteries energy storage system can operate in time. Hence, this proposed method can effectively improve the safety of the system, promoting the large-scale application of secondary batteries and the large-scale construction of the secondary batteries energy storage system with the practical needs.
关键词
可重构 /
梯次电池 /
风险评估 /
储能系统 /
TOPSIS
Key words
reconfigurable architectures /
secondary batteries /
risk management /
energy storage /
system TOPSIS
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李建林, 李雅欣, 吕超, 等. 退役动力电池梯次利用关键技术及现状分析[J]. 电力系统自动化, 2020, 44(13): 172-183.
LI J L, LI Y X, LYU C, et al.Key technologies and current situation of echelon utilization of retired power batteries[J]. Power system automation, 2020, 44(13): 172-183.
[2] 李建林, 李雅欣, 吕超, 等. 碳中和目标下退役电池筛选据欸目标技术研究[J/OL]. 电网技术, 2021-08-05: 1-14.
LI J L, LI Y X, LYU C, et al. Research on decommissioned battery screening technology under carbon neutralization target[J/OL]. Power grid technology, 2021-08-05: 1-14.
[3] 李建林, 武亦文, 吕超, 等. 碳达峰背景下退役锂电池梯次利用电热管理技术[J]. 高电压技术, 2021, 47(9):3061-3074.
LI J L, WU Y W, LYU C, et al.Electrothermal management technology for cascade utilization of retired lithium batteries under the background of carbon peak[J]. High voltage technology, 2021, 47(9): 3061-3074.
[4] 慈松. 数字储能系统[J]. 全球能源互联网, 2018, 1(3):338-347.
CI S.Digital energy storage system[J]. Global energy internet, 2018, 1(3): 338-347.
[5] CI S, ZHOU Y L, XU Y, et al.Building a cloud-based energy storage system through digital transformation of distributed backup battery in mobile base stations[J]. China communications, 2020, 17(4): 42-50.
[6] CI S, LIN N, WU D.Reconfigurable battery techniques and systems: a survey[J]. IEEE access, 2016(4): 1175-1189.
[7] 孙振宇. 基于数据驱动的纯电动汽车动力电池故障诊断方法研究[D]. 北京: 北京理工大学, 2018.
SUN Z Y.Research on fault diagnosis method of pure electric vehicle power battery based on data drive[D]. Beijing: Beijing Institute of Technology, 2018.
[8] 田佳强. 储能锂电池系统健康评估与故障诊断研究[D].合肥: 中国科学技术大学, 2021.
TIAN J Q.Study on health assessment and fault diagnosis of energy storage lithium battery system[D]. Hefei: China University of Science and Technology, 2021.
[9] 李建林, 王哲, 许德智, 等. 基于数据驱动法的锂离子电池寿命预测关键技术综述[J]. 电器与能效管理技术, 2021(9):10-18.
LI J L, WANG Z, XU D Z, et al.Summary of key technologies of lithium ion battery life prediction based on data-driven method[J]. Electrical appliances and energy efficiency management technology, 2021(9): 10-18.
[10] SUN Z, LIU P, WANG Z.Real-time Fault diagnosis method of battery system based on shannon entropy[J]. Energy procedia, 2017, 105: 2354-2359.
[11] PENG L, ZHEN Y S, ZHEN P W, et al.Entropy-based voltage fault diagnosis of battery systems for electric vehicles[J]. Energies, 2018, 11(1): 136.
[12] CI S, HE H, KANG C, YANG Y.Building digital battery system via energy digitization for sustainable 5G power feeding[J]. IEEE wireless communications, 2020, 27(5): 148-154.
[13] MARCOS D, GRAMENDIA M, CREGO J, et al.Hazard and sisk analysis on lithium-based batteries oriented to battery management system design[C]//2020 IEEE Vehicle Power and Propulsion Conference, Gijon, Spain, 2020.
[14] 张家美, 黎灿兵, 彭敏放, 等基于综合功率介数的主动配电网脆弱性分析[J]. 电力系统保护与控制, 2018, 46(18): 41-48.
ZHANG J M, LI C B, PENG M F, et al.Vulnerability analysis of active distribution network based on comprehensive power medium[J]. Power system protection and control, 2018, 46(18): 41-48.
[15] 毕娟, 李希建. 组合赋权的TOPSIS在冲击地压危险性评价中的应用[J]. 矿业安全与环保, 2020, 47(2): 114-119.
BI J, LI X J.Application of combined weighted TOPSIS in rockburst risk assessment[J]. Mining safety and environmental protection, 2020, 47(2): 114-119.
[16] 何永贵, 刘江. 基于组合赋权-云模型的电力物联网安全风险评估[J]. 电网技术, 2020, 44(11): 4302-4309.
HE Y G, LIU J.Electric internet of things security risk assessment based on combined weighting-cloud model[J]. Power system technology, 2020, 44(11): 4302-4309.
[17] 邱伟强, 王茂春, 林振智, 等. “双碳”目标下面向新能源消纳场景的共享储能综合评价[J]. 电力自动化设备, 2021, 41(10): 244-255.
QIU W Q, WANG M C, LIN Z Z, et al.Comprehensive evaluation of shared energy storage for new energy consumption scenario under the“double carbon”goal[J]. Power automation equipment, 2021, 41(10): 244-255.
[18] 毕娟, 李希建. 组合赋权的TOPSIS在冲击地压危险性评价中的应用[J]. 矿业安全与环保, 2020, 47(2): 114-119.
BI J, LI X J.Application of combined weighted TOPSIS in risk assessment of rock burst[J]. Mining safety and environmental protection, 2020, 47(2): 114-119.
[19] 周天念, 吴传平, 陈宝辉. 加热引发三元18650型锂离子电池组的燃烧特性[J]. 储能科学与技术, 2021, 10(2): 558-564.
ZHOU T N, WU C P, CHEN B H.Combustion characteristics of ternary 18650 lithium ion battery pack initiated by heating[J]. Energy storage science and technology, 2021, 10(2): 558-564.
[20] 王彦兵, 王晴晴, 张杰. 锂离子电池性能标准IEC 61960-3:2017解析[J]. 中国标准化, 2022(3): 158-160.
WANG Y B, WANG Q Q, ZHANG J. Analysis of lithium ion battery performance standard IEC 61960-3:2017[J] China standardization, 2022(3): 158-160.
基金
内蒙古自治区重大科技专项(2020ZD0018); 国家重点研发计划(2020YFB1713000)