基于改进灰狼算法优化长短期记忆网络的光伏功率预测

薛阳, 燕宇铖, 贾巍, 衡雨曦, 张舒翔, 秦瑶

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 207-213.

PDF(1768 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1768 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 207-213. DOI: 10.19912/j.0254-0096.tynxb.2022-0320

基于改进灰狼算法优化长短期记忆网络的光伏功率预测

  • 薛阳1, 燕宇铖1, 贾巍2, 衡雨曦1, 张舒翔1, 秦瑶1
作者信息 +

PHOTOVOLTAIC POWER PREDICTION MODEL BASED ON IGWO-LSTM

  • Xue Yang1, Yan Yucheng1, Jia Wei2, Heng Yuxi1, Zhang Shuxiang1, Qin Yao1
Author information +
文章历史 +

摘要

为提高光伏发电功率预测的准确性,提出一种基于改进自适应因子与精英反向学习策略的改进灰狼算法(IGWO),用以优化长短期记忆网络(LSTM)预测模型。利用IGWO优化LSTM全连接层参数,建立IGWO-LSTM组合模型预测光伏功率,具有较好的收敛速度与求解效率,也可有效避免局部最优解。最后基于常州某光伏发电站实时数据进行仿真,实验结果表明IGWO-LSTM相对于LSTM光伏功率预测更具准确性。

Abstract

Improving the accuracy of PV power prediction is important for improving the operational efficiency of PV power plants and ensuring the safety and stability of grid-connected PV operation. Therefore, an improved gray wolf algorithm (IGWO) based on improved adaptive factor and elite backward learning strategy is proposed to optimize the long short-term memory network (LSTM) prediction model. The IGWO is used to optimize the LSTM fully connected layer parameters and build a combined IGWO-LSTM model to predict PV power, which has better convergence speed and solution efficiency, and also can effectively avoid local optimal solutions. Finally, based on the simulation of real-time data from a PV power station in Changzhou, the experimental results show that the IGWO-LSTM has more accuracy than the LSTM PV power prediction.

关键词

光伏发电 / 长短期记忆网络 / 优化算法 / 灰狼算法 / 精英反向学习策略

Key words

PV power generation / long short-term memory / optimization / gray wolf optimizer / elite backward learning strategy

引用本文

导出引用
薛阳, 燕宇铖, 贾巍, 衡雨曦, 张舒翔, 秦瑶. 基于改进灰狼算法优化长短期记忆网络的光伏功率预测[J]. 太阳能学报. 2023, 44(7): 207-213 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0320
Xue Yang, Yan Yucheng, Jia Wei, Heng Yuxi, Zhang Shuxiang, Qin Yao. PHOTOVOLTAIC POWER PREDICTION MODEL BASED ON IGWO-LSTM[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 207-213 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0320
中图分类号: TM615   

参考文献

[1] 彭青龙. 绿色发展、科技人文与跨学科思维——访谈金涌院士[J]. 上海交通大学学报(哲学社会科学版), 2021, 29(4): 1-11.
PENG Q L.Green development, techno-humanities, and interdisciplinary thinking: an interview with Jin Yong[J]. Journal of Shanghai Jiao Tong University(philosophy and social sciences), 2021, 29(4): 1-11.
[2] 胡雪凯, 时珉, 胡文平, 等. 光伏电站功率预测影响因素分析及准确率提升方法研究[J]. 河北电力技术, 2020, 39(2): 1-6.
HU X K, SHI M, HU W P, et al.Study on power forecast affecting factors of photovoltaic power plant and method of improving accuracy rate[J]. Hebei electric power, 2020, 39(2): 1-6.
[3] WANG K J, QI X X, LIU H D.Photovoltaic power forecasting based LSTM-Convolutional Network[J]. Energy, 2019, 189: 116225.
[4] LOPES F M, SILVA H G, SALGADO R, et al.Short-term forecasts of GHI and DNI for solar energy systems operation: assessment of the ECMWF integrated forecasting system in southern Portugal[J]. Solar energy, 2018, 170: 14-30.
[5] MILLER S D, ROGERS M A, HAYNES J M, et al.Short-term solar irradiance forecasting via satellite/model coupling[J]. Solar energy, 2018, 168: 102-117.
[6] SANjARI M J, GOOI H B. Probabilistic forecast of PV power generation based on higher order Markov chain[J]. IEEE transactions on power systems, 2016, 32(4): 2942-2952.
[7] YONA A, SENJYU T, FUNABASHI T, et al.Determination method of insolation prediction with fuzzy and applying neural network for long-term ahead PV power output correction[J]. IEEE transactions on sustainable energy, 2013, 4(2): 527-533.
[8] BHAVSAR S, PITCHUMANI R, ORTEGA-VAZQUEZ M A. Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts[J]. Applied energy, 2021, 293: 116964.
[9] FERLITO S, ADINOLFI G, GRADITI G.Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production[J]. Applied energy, 2017, 205: 116-129.
[10] LIU J, FANG W L, ZHANG X D, et al.An improved photovoltaic power forecasting model with the assistance of aerosol index data[J]. IEEE transactions on sustainable energy, 2015, 6(2): 434-442.
[11] BOUZERDOUM M, MELLIT A, PAVAN A M.A hybrid model (SARIMA-SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant[J]. Solar energy, 2013, 98(4): 226-235.
[12] 张雨金, 杨凌帆, 葛双冶, 等. 基于Kmeans-SVM 的短期光伏发电功率预测[J]. 电力系统保护与控制, 2018, 46(21): 118-124.
ZHANG Y J, YANG L F, GE S Y, et al.Short-term photovoltaic power forecasting based on Kmeans algorithm and support vector machine[J]. Power system protection and control, 2018, 46(21): 118-124.
[13] 殷豪, 陈云龙, 孟安波, 等. 基于二次自适应支持向量机的光伏输出功率预测[J]. 太阳能学报, 2019, 40(7): 1866-1873.
YIN H, CHEN Y L, MENG A B, et al.Forecasting photovoltaic power based on quadric self-adaptive svm model[J]. Acta energiae solaris sinica, 2019, 40(7): 1866-1873.
[14] ESEYE A T, ZHANG J H, ZHENG D H.Short-term photovoltaic solar power forecasting using a hybrid wavelet PSO-SVM model based on SCADA and meteorological information[J]. Renewable energy, 2018, 118: 357-367.
[15] 江志晃. 一种面对大数据集的改进基于支持向量机的算法性能分析[J]. 自动化技术与应用, 2020, 39(2): 27-29.
JIANG Z H.An improved algorithm performance analysis based on support vector machine(SVM)for large data sets[J]. Techniques of automation and applications, 2020, 39(2): 27-29.
[16] 王育飞, 付玉超, 薛花. 基于Chaos-EEMD-PFBD 分解和 GA-BP 神经网络的光伏发电功率超短期预测法[J]. 太阳能学报, 2020, 41(12): 55-62.
WANG Y F, FU Y C, XUE H.Ultra-short-term forecasting method of photovoltaic power generation based on chaos-EEMD-PFBD decomposition and GA-BP neural networks[J]. Acta energiae solaris sinica, 2020, 41(12): 55-62.
[17] 丁坤, 丁汉祥, 王越, 等. 基于提升小波-BP 神经网络的光伏阵列短期功率预测[J]. 可再生能源, 2017, 35(4): 566-571.
DING K, DING H X, WANG Y, et al.Short-term power prediction of photovoltaic array based on lifting wavelet transform-BP neural network[J]. Renewable energy resources, 2017, 35(4): 566-571.
[18] 卢忠山, 袁建华. 基于EEMD-LSTM方法的光伏发电系统超短期功率预测[J]. 中国测试,2022, 48(12): 125-132.
LU Z S, YUAN J H.Ultra-short term power prediction of photovoltaic power generation system based on EEMD-LSTM method[J]. China measurement & test,2022, 48(12): 125-132.
[19] 张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38.
ZHANG X F, WANG X Y.Comprehensive review of grey wolf optimization algorithm[J]. Computer science, 2019, 46(3): 30-38.
[20] 孙辉, 邓志诚, 赵嘉, 等. 混合均值中心反向学习粒子群优化算法[J]. 电子学报, 2019, 47(9): 1809-1818.
SUN H, DENG Z C, ZHAO J, et al.Hybrid mean center opposition-based learning particle swarm optimization[J]. Acta electronica sinica, 2019, 47(9): 1809-1818.
[21] 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45(3):174-182.
YANG J X, ZHANG S, LIU J C, et al.Short-term photovoltaic power prediction based on variational mode decomposition and long short term memory with dual-stage attention mechanism[J]. Automation of electric power systems, 2021, 45(3): 174-182.

基金

国家自然科学基金(52075316); 上海市2021年度“科技创新行动计划”(21DZ1207502); 国网浙江省电力有限公司科技项目(5211HZ17000F)

PDF(1768 KB)

Accesses

Citation

Detail

段落导航
相关文章

/