不同操作和环境条件下的PEMFC低温冷启动数值模拟研究

赵杰, 李文浩, 杜常清, 卢炽华

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 460-466.

PDF(1763 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1763 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 460-466. DOI: 10.19912/j.0254-0096.tynxb.2022-0321

不同操作和环境条件下的PEMFC低温冷启动数值模拟研究

  • 赵杰1,2, 李文浩1,2, 杜常清1,2, 卢炽华1,2
作者信息 +

NUMERICAL SIMULATION STUDY OF LOW TEMPERATURE COLD START OF PEMFC UNDER DIFFERENT OPERATING AND ENVIRONMENTAL CONDITIONS

  • Zhao Jie1,2, Li Wenhao1,2, Du Changqing1,2, Lu Chihua1,2
Author information +
文章历史 +

摘要

基于COMSOL建立质子交换膜燃料电池低温冷启动一维瞬态多物理场耦合模型,该模型考虑气态水和膜态水在0 ℃以下结冰来研究恒电压输出、恒电流输出、膜态水初始含量以及环境温度等不同操作和环境条件对质子交换膜燃料电池低温冷启动性能的影响。结果表明,恒电压输出模式下,低电压操作相对于高电压能产生更多的热,温度上升更快,但结冰速率也会激增,从而导致性能衰减更快;恒电流输出模式相较于恒电压能达到更高的温度,但需更好的气体传质能力;如果低温冷启动之前吹扫不足导致膜水含量较高,膜的储水能力下降,这将造成输出性能下降更快,不利于冷启动的成功进行;启动时环境温度的不同会直接影响燃料电池低温冷启动成功与否,仅依赖被动加热成功启动的初始环境温度存在极限值。

Abstract

A low temperatrue 1-D transient multiphysics coupled cold start model of proton exchange membrane fuel cell based on COMSOL is established to investigate the effects of different operating and environment conditions including constant-voltage mode、constant-current mode、initial membrane water content and ambient temperarure on the performance of cold startup from subzero temperatures,considering the freezing process of water vapor and membrane water below 0 ℃. It is found that fuel cell can generate more heat under low voltage compared with high voltage and the temperature rises faster. However the rate of icing increases sharply resulting in faster performance degradation. Fuel cell can reach a higher temperature under constant-current mode compared with constant-voltage mode but requires better mass transfer capacity of reactant gas. If the purging is insufficient before the low temperature cold start, the water content of the membrane is high and the water storage capacity of the membrane decreases which will cause the output performance to degrade faster which is not conducive to the success of cold start. The difference of ambient temperature during startup will directly affect the success of cold startup and there is a limit value for the initial ambient temperature that only relies on passive heating for successful startup.

关键词

燃料电池 / 质子交换膜 / 数值模拟 / 一维瞬态模型 / 低温冷启动

Key words

fuel cell / proton exchange membrane / numerical simulation / 1D transient model / low temperature cold start

引用本文

导出引用
赵杰, 李文浩, 杜常清, 卢炽华. 不同操作和环境条件下的PEMFC低温冷启动数值模拟研究[J]. 太阳能学报. 2022, 43(6): 460-466 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0321
Zhao Jie, Li Wenhao, Du Changqing, Lu Chihua. NUMERICAL SIMULATION STUDY OF LOW TEMPERATURE COLD START OF PEMFC UNDER DIFFERENT OPERATING AND ENVIRONMENTAL CONDITIONS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 460-466 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0321
中图分类号: TK91   

参考文献

[1] LUO Y Q, JIAO K.Cold start of proton exchange membrane fuel cell[J]. Progress in energy and combustion science, 2018, 64: 29-61.
[2] 孙术发, 任春龙, 杨洁, 等. 二次吹扫条件下PEMFC电堆冷启动特性实验研究[J]. 太阳能学报, 2021, 42(5):54-59.
SUN S F, REN C L, YANG J, et al.Experimental study on cold boot characteristics of pemfc stack under twice-purge condition[J]. Acta energiae solaris sinica, 2021, 42(5): 54-59.
[3] JIAO K, LI X G.Effects of various operating and initial conditions on cold start performance of polymer electrolyte membrane fuel cells[J]. International journal of hydrogen energy, 2009, 34(19): 8171-8184.
[4] YANG X G, TABUCHI Y, KAGAMI F, et al.Durability of membrane electrode assemblies under polymer electrolyte fuel cell cold start cycling[J]. Journal of the ElectroChemical Society, 2008, 155(7): B752-B761.
[5] ZHAN Z G, YUAN C, HU Z R, et al.Experimental study on different preheating methods for the cold-start of PEMFC stacks[J]. Energy, 2018, 162: 1029-1040.
[6] RIOS G M, SCHIRMER J, GENTNER C, et al.Efficient thermal management strategies for cold starts of a proton exchange membrane fuel cell system[J]. Applied energy, 2020, 279: 115813.
[7] LUO M Z, ZHANG J, ZHANG C Z, et al.Cold start investigation of fuel cell vehicles with coolant preheating strategy[J]. Applied thermal engineering, 2021, 201: 117816.
[8] GUO H P, SUN S C, YU H M, et al.Proton exchange membrane fuel cell subzero start-up with hydrogen catalytic reaction assistance[J]. Journal of power sources, 2019, 429: 180-187.
[9] 鲜亮, 肖建, 贾俊波, 等. 质子交换膜燃料电池冷启动模型研究[J]. 太阳能学报, 2011, 32(12): 1857-1863.
XIAN L, XIAO J, JIA J B, et al.Study on cold-start modeling of proton exchange membrane fuel cell[J]. Acta energiae solaris sinica, 2011, 32(12): 1857-1863.
[10] MENG H.A pem fuel cell model for cold-start simulations[J]. Journal of power sources, 2008, 178(1): 141-150.
[11] MEMG H.Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures[J]. International journal of hydrogen energy, 2008, 33(20): 5738-5747.
[12] BALLIET R J, NEWMAN J.Cold start of a polymer-electrolyte fuel cell i. development of a two-dimensional model[J]. Journal of the electrochemical society, 2011, 158(8): B927-B938.
[13] BALLIET R J, NEWMAN J.Cold start of a polymer-electrolyte fuel cell iii. optimization of operational and configurational parameters[J]. Journal of the electrochemical society, 2011, 158(8): B948-B956.
[14] GUO Q, LUO Y, JIAO K.Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International journal of hydrogen energy, 2013, 38(2): 1004-1015.
[15] JIANG H L, XU L F, STRUCHTRUP H, et al.Modeling of fuel cell cold start and dimension reduction simplification method[J]. Journal of the electrochemical society, 2020, 167(4): 044501.

基金

先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHD2020-003)

PDF(1763 KB)

Accesses

Citation

Detail

段落导航
相关文章

/