该文以实现宽谱减反、吸收增强的介质纳米结构织构化表面超薄晶硅太阳电池为目标,利用时域有限差分(FDTD)方法,系统仿真不同形貌纳米结构对太阳电池宽谱减反及吸收性能的影响。同时,借助仿真所得电场强度分布数据,进一步分析介质纳米结构织构化表面的超薄晶硅电池减反及陷光机理。结果表明:基于Mie共振散射、Fabry-Perot共振等多种模式的共同作用,表面制备介质纳米结构的超薄晶硅电池对入射光的吸收能力较表面制备单层减反层的电池大大提升,在部分波段甚至超过Yablonovitch界限。
Abstract
This research is dedicated to the improvement of the dielectric nanostructures decorated ultrathin crystalline silicon (c-Si) solar cells with broadband antireflection and enhanced absorption ability. Finite difference time domain (FDTD) method is used to simulate the effects of nanostructures with different sidewall profile on the broadband antireflection and enhanced absorption ability for the solar cells. Further analysis is implemented for the antireflection and light trapping mechanisms of the dielectric nanostructures decorated ultrathin c-Si solar cells with the help of the simulated field intensity distribution data. The results show that the dielectric nanostructures decorated c-Si solar cells presented improved light absorptance ability compared with the single antireflection layer (SARL) decorated cells, owing to the combination of multiple modes including Mie resonance scattering, Fabry-Perot resonance, ect., with the absorption even surpasses the Yablonovitch limit at some wavelengths range.
关键词
减反膜 /
光吸收 /
时域有限差分方法 /
介质纳米结构 /
超薄晶硅太阳电池
Key words
antireflection coatings /
light absorption /
FDTD methods /
dielectric nanostructures /
ultrathin c-Si solar cells
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GAUCHER A, CATTONI A, DUPUIS C, et al.Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping[J]. Nano letters, 2016, 16(9): 5358-5364.
[2] LI Y, LI Y K, WANG X X, et al.Ultrathin c-Si solar cells based on microcavity light trapping scheme[J]. Optical and quantum electronics, 2019, 51(5): 138.
[3] TANG Q T, SHEN H L, YAO H Y, et al.Cu-assisted chemical etching of bulk c-Si: a rapid and novel method to obtain 45 μm ultrathin flexible c-Si solar cells with asymmetric front and back light trapping structures[J]. Solar energy, 2018, 170: 263-272.
[4] ZHOU S Q, YANG Z H, GAO P Q, et al.Wafer-scale integration of inverted nanopyramid arrays for advanced light trapping in crystalline silicon thin film solar cells[J]. Nanoscale research letters, 2016, 11: 194.
[5] LEE H S, SUK J, KIM H, et al.Enhanced efficiency of crystalline Si solar cells based on kerfless-thin wafers with nanohole arrays[J]. Scientific reports, 2018, 8: 3504.
[6] HE J, HOSSAIN M A, LIN H, et al.15% efficiency ultrathin silicon solar cells with fluorine-doped titanium oxide and chemically tailored poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) as asymmetric heterocontact[J]. ACS nano, 2019, 13(6): 6356-6362.
[7] MEYER A R, CHAUKULKAR R P, LEICK N, et al.Chemical passivation of crystalline Si by Al2O3 deposited using atomic layer deposition: implications for solar cells[J]. ACS applied nano materials, 2021, 4(7): 6629-6636.
[8] SONG H, OHDAIRA K. Passivation effect of ultra-thin SiNx films formed by catalytic chemical vapor deposition for crystalline silicon surface[J]. Japanese journal of applied physics, 2018, 57(8S3): 08RB03.
[9] 张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
ZHANG Y L, CHEN X L, ZHOU Z X, et al.Research progress of crystalline silicon solar cells[J]. Acta energiae solaris sinica, 2021, 42(10): 49-60.
[10] 石强, 单伟, 胡金艳, 等. 双层SiNx:H减反膜多晶硅太阳电池及其组件性能研究[J]. 太阳能学报, 2015, 36(1): 108-112.
SHI Q, SHAN W, HU J Y, et al.Polycystal line solar cell with double SiNx:H anti-reflection film and its modules performance[J]. Acta energiae solaris sinica, 2015, 36(1): 108-112.
[11] WANG Y Y, YE X J, ZHU J, et al.Efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures[J]. Optics communications, 2015, 343: 178-182.
[12] WANG Y Y, ZHANG R Y, ZHANG Z, et al.Efficiency improvement of GaInP solar cells by broadband omnidirectional antireflection through dielectric composite nanostructures[J]. Solar energy materials and solar cells, 2017, 169: 33-39.
[13] SUN T Y, TU J, GAO L, et al.Sidewall profile dependent nanostructured ultrathin solar cells with enhanced light trapping capabilities[J]. IEEE photonics journal, 2019, 12(1): 1-12.
[14] ZHONG S H, WANG W J, ZHUANG Y F, et al.All-solution-processed random Si nanopyramids for excellent light trapping in ultrathin solar cells[J]. Advanced functional materials, 2016, 26(26): 4768-4777.
[15] LIN Y Y, XU Z, YU D L, et al.Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency[J]. ACS applied materials & interfaces, 2016, 8(17): 10929-10936.
[16] BRONGERSMA M, CUI Y, FAN S H.Light management for photovoltaics using high-index nanostructures[J]. Nature materials, 2014, 13(5): 451-460.
基金
江苏省高等学校基础科学(自然科学)研究面上项目(21KJD430002); 国家自然科学基金面上项目(11975163)