多模式再生运行的热源塔热泵系统运行能效分析

赵善国, 张小松, 梁彩华, 黄世芳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 107-115.

PDF(1481 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1481 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 107-115. DOI: 10.19912/j.0254-0096.tynxb.2022-0324

多模式再生运行的热源塔热泵系统运行能效分析

  • 赵善国1,2, 张小松1, 梁彩华1, 黄世芳1
作者信息 +

OPERATION EFFICIENCY PERFORMANCE OF MULTI-MODE REGENERATION HEATING TOWER HEAT PUMP SYSTEM

  • Zhao Shanguo1,2, Zhang Xiaosong1, Liang Caihua1, Huang Shifang1
Author information +
文章历史 +

摘要

针对常规建筑空调冷热源形式的不足之处,采用多模式再生系统改善常规热源塔热泵系统,详述其工作原理、工作模式和系统设计方法。在实际节能改造项目中应用该系统并给出控制策略与评价计算方法,对制冷、制热和吸湿的典型工况进行现场实际测试,结果表明:在该系统设计参数下,夏季平均空气温度28.6 ℃、平均相对湿度84.5%工况综合制冷效率为4.51,冬季平均空气温度7.68 ℃、平均相对湿度81.2%工况考虑再生能耗在内综合制热效率为3.46。系统运行过程中溶液吸湿量与环境温度和相对湿度有关,环境温度越高,相对湿度越低,吸湿量越小。热源塔吸热由显热和潜热两部分组成,潜热占比受运行过程吸湿量影响,与空气相对湿度直接强相关,相对湿度越低,空气与水接触面水蒸气分压力差越小,水分更难从空气迁移到溶液中。测试时间内平均相对湿度81.2%的工况下由溶液吸湿导致的潜热占总系统热量比例约为18.6%。再生机组再生效率高低受外界环境与工况变化的影响较小,5天内平均值为4.45 kg/kWh。

Abstract

To address the inadequacies of traditional building air conditioning systems’cooling and heating sources, this study employs a multi-mode regeneration heating tower heat pump system and discusses its operating principle and mode in detail. The novel system is used in an actual energy-saving transformation project, and the control strategy and calculation techniques for assessment are provided. The results of field tests conducted under normal operating circumstances of refrigeration in the summer and heating in the winter reveal that in summer, the average comprehensive cooling efficiency is 4.34 with an average air temperature of 28.6 ℃ and an average relative humidity of 84.5%. At an average ambient temperature of 7.68 ℃ and an average relative humidity of 81.2%, the average comprehensive heating efficiency is 3.46. The moisture absorption of the solution during system operation is related to the ambient temperature and relative humidity. The moisture absorption keeps a smaller amount at a higher ambient temperature and lower relative humidity. The heat absorption of heating tower is composed of sensible heat and latent heat. The proportion of latent heat is affected by the moisture absorption during operation and strongly related to the relative humidity of the air. The lower the relative humidity, the smaller the differential pressure of water vapor on the air-water contact surface, and the more difficult it is for water to migrate from the air to the solution. Under the test conditions of 81.2% relative humidity during the test time, the latent heat caused by moisture absorption accounts for approximately 11.5 percent. With changes in the external environment and working conditions, the regeneration efficiency of the regeneration unit remains relatively stable, with an average value of 4.45 kg/kWh within 5 days.

关键词

热泵系统 / 运行效率 / 制冷 / 制热 / 热源塔 / 再生

Key words

heat pump systems / operation efficient / cooling / heating / heating tower / regeneration

引用本文

导出引用
赵善国, 张小松, 梁彩华, 黄世芳. 多模式再生运行的热源塔热泵系统运行能效分析[J]. 太阳能学报. 2023, 44(7): 107-115 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0324
Zhao Shanguo, Zhang Xiaosong, Liang Caihua, Huang Shifang. OPERATION EFFICIENCY PERFORMANCE OF MULTI-MODE REGENERATION HEATING TOWER HEAT PUMP SYSTEM[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 107-115 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0324
中图分类号: TU831   

参考文献

[1] 袁宸章, 李念平, 何颖东, 等. 建筑室内人体太阳辐射得热特性及数值模拟[J]. 太阳能学报, 2022, 43(2): 296-302.
YUAN C Z, LI N P, HE Y D, et al.Thermal characteristics and numerical simulation of solar radiation on human body in buildings[J]. Acta energiae solaris sinica, 2022, 43(2): 296-302.
[2] DING Y, LIU X.A comparative analysis of data-driven methods in building energy benchmarking[J]. Energy and buildings, 2020, 209: 109711.
[3] 龙惟定, 梁浩. 我国城市建筑碳达峰与碳中和路径探讨[J]. 暖通空调, 2021, 51(4): 1-17.
LONG W D, LIANG H.Discussion on paths of carbon peak and carbon neutrality of urban buildings in China[J]. Journal of HV&AC, 2021, 51(4): 1-17.
[4] 王有为. 谈“碳”——碳达峰与碳中和愿景下的中国建筑节能工作思考[J]. 建筑节能(中英文), 2021, 49(1): 1-9.
WANG Y W.China’s building energy efficiency efforts to peaking carbon dioxide emissions and achieving carbon neutrality[J]. Journal of building energy efficiency, 2021, 49(1): 1-9.
[5] 徐伟, 倪江波, 孙德宇, 等. 我国建筑碳达峰与碳中和目标分解与路径辨析[J]. 建筑科学, 2021, 37(10):1-8, 23.
XU W, NI J B, SUN D Y, et al.Research on the target decomposition and path of building carbon peak and carbon neutrality in china[J]. Building science, 2021, 37(10):1-8, 23.
[6] WEI X P, XU G L, KUSIAK A.Modeling and optimization of a chiller plant[J]. Energy, 2014, 73: 898-907.
[7] 王刚, 赵琰. 土壤源热泵供暖间歇运行时间的计算分析[J]. 化工学报, 2020, 71(S1): 430-435.
WANG G, ZHAO Y.Calculation and analysis of soil source heat pumps intermittent heating operation time[J]. CIESC journal, 2020, 71(S1): 430-435.
[8] SARBU I, SEBARCHIEVICI C.General review of ground-source heat pump systems for heating and cooling of buildings[J]. Energy and buildings, 2014, 70: 441-454.
[9] ZHANG L, JIANG Y Q, DONG J K, et al.Advances in vapor compression air source heat pump system in cold regions: a review[J]. Renewable and sustainable energy reviews, 2018, 81: 353-365.
[10] 张毅, 张冠敏, 冷学礼, 等. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419.
ZHANG Y, ZHANG G M, LENG X L, et al.Research progress on frost-free air source heat pump technology[J]. CIESC journal, 2020, 71(12): 5400-5419.
[11] IBARRA-BAHENA J, ROMERO R J.Performance of different experimental absorber designs in absorption heat pump cycle technologies: a review[J]. Energies, 2014, 7(2): 751-766.
[12] FUJITA T, KAWAHARA K.Thermal characteristics of heating tower part I: counterflow towers[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2012, 6: 265-274.
[13] FUJITA T, KAWAHARA K.Thermal characteristics of heating towers part II: crossflow towers[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2012, 6: 275-284.
[14] SEKI H, KOMORI T.Packed-column-type heating tower for recovery of heat generated in compost[J]. Journal of agricultural meteorology, 1992, 48(3): 237-246.
[15] TAN K X.A study of a desuperheater heat recovery system complete with a reversibly used water cooling tower (RUWCT) for hot water supply[D]. Hong Kong: Hong Kong Polytechnic University, 2000.
[16] TAN K X, DENG S M.A method for evaluating the heat and mass transfer characteristics in a reversibly used water cooling tower (RUWCT) for heat recovery[J]. International journal of refrigeration, 2002, 25(5): 552-561.
[17] TAN K X, DENG S M.A numerical analysis of heat and mass transfer inside a reversibly used water cooling tower[J]. Building and environment, 2003, 38(1): 91-97.
[18] LI N P, ZHANG W J, WANG L J, et al.Experimental study on energy efficiency of heat-source tower heat pump units in winter condition[C]//2011 Third International Conference on Measuring Technology and Mechatronics Automation, IEEE, Shanghai, China, 2011, 2: 135-138.
[19] WU J S, ZHANG G, ZHANG Q, et al.Artificial neural network analysis of the performance characteristics of a reversibly used cooling tower under cross flow conditions for heat pump heating system in winter[J]. Energy and buildings, 2011, 43(7): 1685-1693.
[20] WU J S, ZHANG G, ZHANG Q, et al.Experimental investigation of the performance of a reversibly used cooling tower heating system using heat pump in winter[C]//2011 Asia-Pacific Power and Energy Engineering Conference, IEEE, Wuhan, China, 2011: 1-4.
[21] WEN X T, LIANG C H, ZHANG X S.Experimental study on heat transfer coefficient between air and liquid in the cross-flow heat-source tower[J]. Building and environment, 2012, 57: 205-213.
[22] LIANG C H, WEN X T, LIU C X, et al.Performance analysis and experimental study of heat-source tower solution regeneration[J]. Energy conversion and management, 2014, 85: 596-602.
[23] LIU M Z, JIANG L F, ZHANG H, et al.An exploration on the applicability of heating tower heat pump and air source heat pump systems in different climatic regions[J]. Journal of cleaner production, 2019, 238: 117889.
[24] HUANG S F, YE Y Y, HAN X, et al.Performance evaluation of heating tower heat pump systems over the world[J]. Energy conversion and management, 2019, 186: 500-515.
[25] HUANG S F, ZUO W D, LU H, et al.Performance comparison of a heating tower heat pump and an air-source heat pump: a comprehensive modeling and simulation study[J]. Energy conversion and management, 2019, 180: 1039-1054.
[26] HUANG S F, XIE L Y, LU L, et al.Design method for heating towers used in vapor-compression heat pump systems[J]. Building and environment, 2021, 189: 107532.
[27] 文先太, 梁彩华, 刘成兴, 等. 基于空气能量回收的热源塔溶液再生系统节能性分析[J]. 化工学报, 2011, 62(11): 3242-3247.
WEN X T, LIANG C H, LIU C X, et al.Energy-saving analysis of solution regeneration in heat-source tower based on recovery of air energy[J]. CIESC journal, 2011, 62(11): 3242-3247.
[28] 文先太, 曹先齐, 余鹏飞, 等. 新型热源塔溶液再生系统性能优化分析与实验研究[J]. 化工学报, 2018, 69(5): 2226-2232.
WEN X T, CAO X Q, YU P F, et al.Energy-saving analysis and experimental study of a new heat-source tower solution regeneration system[J]. CIESC journal, 2018, 69(5): 2226-2232.
[29] HUANG S F, LYU Z Y, ZHANG X S, et al.Experimental investigation on heat and mass transfer in heating tower solution regeneration using packing tower[J]. Energy and buildings, 2018, 164: 77-86.
[30] 黄与非, 葛凤华, 胡自成, 等. 低温工况热源塔热泵系统应用试验分析[J]. 太阳能学报, 2021, 42(2): 260-266.
HUANG Y F, GE F H, HU Z C, et al.Experimental analysis on application of heat source tower heat pump system under low temperature condition[J]. Acta energiae solaris sinica, 2021, 42(2): 260-266.

基金

国家自然科学基金国际合作项目(51520105009)

PDF(1481 KB)

Accesses

Citation

Detail

段落导航
相关文章

/