采用太阳能驱动电解水制氢是实现将太阳能转换为氢能来存储的最佳方式。该文提出一种采用光伏、光热协同驱动固体氧化物电解池(SOEC)进行高温蒸汽电解的制氢系统。建立各子系统数学模型,选取北京地区夏至日气象参数,分析太阳辐照度对制氢系统的性能影响,最后对整个系统进行能量及火用分析。结果表明,电流密度和温度是影响SOEC工作的重要因素。在电流密度较大的情况下升高温度,将有利于提高电解效率。耦合太阳能后系统最大能量及火用效率分别达到19.1%和20.3%。火用分析结果表明系统最大有用功损失发生在光电转换过程,火用损比例为87%。提升光电效率,将成为提高太阳能-氢能转换效率的关键。
Abstract
Hydrogen production by electrolysis of water driven by solar energy is the best way to convert solar energy into hydrogen energy for storage. This paper proposes a hydrogen production system that uses photovoltaic and photothermal technologies to drive solid oxide electrolytic cells for high-temperature steam electrolysis. The mathematical model of each subsystem is established, and the influence of solar irradiation intensity on the performance of hydrogen production system is analyzed by selecting the meteorological parameters of summer solstice in Beijing. Finally, the energy and exergy analysis of the overall system is carried out. The results show that both the current density and the operation temperature are important factors affecting SOEC operation. In the case of the high current density, increasing the operation temperature will be beneficial to improve the electrolytic efficiency. The maximum energy and exergy efficiencies of the system after coupling solar energy can reach 19.1% and 20.3%, respectively. Exergy analysis shows that the maximum useful effort loss of the system occurs in the photoelectric conversion process, and the loss ratio is 87%. Improving the photoelectric conversion efficiency will be the key to improve the solar-hydrogen conversion efficiency.
关键词
太阳能 /
固体氧化物 /
电解池 /
制氢 /
太阳能集热器 /
光伏
Key words
solar energy /
solid oxide /
electrolytic cells /
hydrogen production /
solar collectors /
photovoltaic
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KALEIBARI S S, ZHANG Y P, ABANADES S.Solar-driven high temperature hydrogen production via integrated spectrally split concentrated photovoltaics (SSCPV) and solar power tower[J]. International journal of hydrogen energy, 2019, 44(5): 2519-2532.
[2] IM-ORB K, VISITDUMRONGKUL N, SAEBEA D,et al.Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production[J]. Journal of cleaner production, 2018, 170: 1-13.
[3] NI M, LEUNG M K H, LEUNG D Y C. Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant[J]. International journal of hydrogen energy, 2007, 32(18): 4648-4660.
[4] ALZAHRANI A A, DINCER I.Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production[J]. Applied energy, 2018, 225: 471-485.
[5] PETIPAS F, BRISSE A, BOUALLOU C.Model-based behaviour of a high temperature electrolyser system operated at various loads[J]. Journal of power sources, 2013, 239: 584-595.
[6] SANZ-BERMEJO J, MUNOZ-ANTON J, GONZALEZ-AGUILAR J,et al.Part load operation of a solid oxide electrolysis system for integration with renewable energy sources[J]. International journal of hydrogen energy, 2015, 40(26): 8291-8303.
[7] HENKE M, WILLICH C, KALLO J, et al.Theoretical study on pressurized operation of solid oxide electrolysis cells[J]. International journal of hydrogen energy, 2014, 39(24): 12434-12439.
[8] 张晨佳, 蔡军, 张玉魁, 等. 基于热力学平衡的高温固体氧化物电解水制氢模拟[J]. 太阳能学报, 2021, 42(9): 210-217.
ZHANG C J, CAI J, ZHANG Y K, et al.Simulation of high temperature solid oxide water electrolysis for hydrogen production based on thermodynamic equilibrium[J]. Acta energiae solaris sinica, 2021, 42(9): 210-217.
[9] 黄湘. 太阳能热发电技术[M]. 北京: 中国电力出版社, 2013: 201.
HUANG X.Solar thermal power generation technology [M]. Beijing: China Electric Power Press, 2013: 201.
[10] 杨金焕. 太阳能光伏发电应用技术[M]. 北京: 电子工业出版社, 2017.
YANG J H.Solar photovoltaic power generation application technology[M]. Beijing: Publishing House of Electronics Industry, 2017.
[11] CABRAL V C T, FILHD D O, DINIZ A S A C, et al. A stochastic method for stand-alone photovoltaic system sizing[J]. Solar energy, 2010, 84(9): 1628-1636.
[12] MOMMA A, KATO T, KAGA Y,et al.Polarization behavior of high temperature solid oxide electrolysis Cells (SOEC)[J]. Journal of the Ceramic Society of Japan, 1997, 105(1221): 369-373.
[13] DUDLEY V E, KOLB G J, MAHONEY A R, et al.Test results: SEGS LS-2 solar collector[R]. SANDIA-1884, 1994.
[14] SALAMEH Z M, BOROWY B S.Photovoltaic module-site matching based on the capacity factors[J]. IEEE transactions on energy conversion, 1995, 10(2): 326-332.
[15] KALOGIROU. Solar energy engineering: Processes and systems[M]. Amsterdam: Elsevier, 2009.
[16] 毛宗强. 燃料电池[M]. 北京: 化学工业出版社, 2005.
MAO Z Q.The fuel cell[M]. Beijing: Chemical Industry Press, 2005.
[17] WANG Z W, MORI M, ARAKI T.Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300 Nm3·h-1[J]. International journal of hydrogen energy, 2010, 35(10): 4451-4458.
[18] JOSHI A S, DINCER I, REDDY B V.Thermodynamic assessment of photovoltaic systems[J]. Solar energy, 2009, 83(8): 1139-1149.
[19] BALTA M T, DINCER I, HEPBASLI A.Thermodynamic assessment of geothermal energy use in hydrogen production[J]. International journal of hydrogen energy, 2009, 34(7): 2925-2939.
[20] ALZAHRANI A A, DINCER I.Design and analysis of a solar tower based integrated system using high temperature electrolyzer for hydrogen production[J]. International journal of hydrogen energy, 2016, 41(19): 8042-8056.
基金
国家电网有限公司总部科技项目“基于储能调控的柔性可控分布式系统理论与技术”(5100-202199531A-0-5-ZN)