针对风力机翼型在进行高精度设计时变量维度高的问题,提出改进的集成泛函理论与型函数扰动相结合的混合参数化方法。通过串行设计,在不提高设计维度的前提下,实现翼型的全局优化与局部再优化。基于该方法并应用自适应设计空间的粒子群算法,获得最大相对厚度为15%的混合优化翼型。与风力机专用翼型Risø-A1-15以及集成优化翼型进行气动特性比较分析,新翼型在工作攻角范围内的升力系数平均提升了38.62%与6.48%,最大升阻比提升了6.02%与1.75%,气动特性明显改善。从而验证了该方法的有效性,为翼型的精细化设计提供了新思路。
Abstract
Aiming at the high dimensionality of variables in high-precision design of wind turbine airfoil, a hybrid parameterization method combining improved functional integration theory and shape function perturbation is proposed. The global optimization and local re-optimization of airfoils are achieved by serial design without increasing the design dimensions, and a hybrid optimized airfoil with the maximum relative thickness of 15% is obtained by applying the particle swarm optimization (PSO) algorithm of adaptive design space. Compared with the wind turbine airfoil Risø-A1-15 and the integrated optimized airfoil, the new airfoil has significantly enhanced aerodynamic characteristics with an average lift coefficient improvement of 38.62% and 6.48% in the main operating angle of attack range and the maximum lift-drag ratio improvement of 6.02% and 1.75%. Therefore, the feasibility of the method is verified and a new perspective is provided for the refinement of the airfoil design.
关键词
风力机 /
翼型 /
泛函集成 /
型函数扰动 /
粒子群算法
Key words
wind turbines /
airfoil /
functional integration /
shape function perturbation /
particle swarm optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WANG K, YU S J, WANG Z, et al.Adjoint-based airfoil optimization with adaptive isogeometric discontinuous galerkin method[J]. Computer methods in applied mechanics and engineering, 2019, 344: 602-625.
[2] HANSEN T H.Airfoil optimization for wind turbine application[J]. Wind energy, 2018, 21(7): 502-514.
[3] VURUSKAN A, HOSDER S.Impact of turbulence models and shape parameterization on robust aerodynamic shape optimization[J]. Journal of aircraft, 2019, 56(3): 1099-1115.
[4] KAVIANI H, NEJAT A.Aeroacoustic and aerodynamic optimization of a MW class HAWT using MOPSO algorithm[J]. Energy, 2017, 140: 1198-1215.
[5] 刘凌君, 周越, 高振勋. 基于神经网络的翼型气动力计算和反设计方法[J]. 气体物理, 2018, 3(5): 41-47.
LIU L J, ZHOU Y, GAO Z X.Aerodynamic force calculation and inverse design for airfoil based on neural network[J]. Physics of gases, 2018, 3(5): 41-47.
[6] 常林森, 张倩莹, 郭雪岩. 基于高斯过程回归和遗传算法的翼型优化设计[J]. 航空动力学报, 2021, 36(11): 2306-2316.
CHANG L S, ZHANG Q Y, GUO X Y.Airfoil optimization design based on Gaussian process regression and genetic algorithm[J]. Journal of aerospace power, 2021, 36(11): 2306-2316.
[7] 刘华威, 吴永忠, 张朋杨, 等. 基于自适应模拟退火遗传算法的风力机翼型优化设计[J]. 可再生能源, 2018, 36(6): 930-934.
LIU H W, WU Y Z, ZHANG P Y, et al.Research on adaptive simulated annealing genetic algorithm in wind turbine airfoil optimization design[J]. Renewable energy resources, 2018, 36(6): 930-934.
[8] 周鹏展, 何振, 王琦, 等. 基于Bezier曲线和弯度函数的翼型优化设计[J]. 长沙理工大学学报(自然科学版), 2020, 17(3): 90-94.
ZHOU P Z, HE Z, WANG Q, et al.Optimization design of airfoil based on Bezier curve and bend function[J]. Journal of Changsha University of Science and Technology(natural science), 2020, 17(3): 90-94.
[9] 陈进, 陆群峰, 王旭东, 等. 基于自适应遗传算法的风力机通用翼型的优化设计研究[J]. 中国机械工程, 2009, 20(20): 2448-2451, 2469.
CHEN J, LU Q F, WANG X D, et al.Research on optimization of general airfoil profiles for wind turbines based on adaptive genetic algorithm[J]. China mechanical engineering, 2009, 20(20): 2448-2451, 2469.
[10] 刘丽娜, 吴国新. 基于Hicks-Henne型函数的翼型参数化设计以及收敛特性研究[J]. 科学技术与工程, 2014, 14(30): 151-155.
LIU L N, WU G X.Research on application of Hicks-Henne function in airfoil shape parameterization & convergence[J]. Science technology and engineering, 2014, 14(30): 151-155.
[11] 陈进, 汪泉, 李松林, 等. 翼型集成理论与B样条结合的风力机翼型优化设计方法研究[J]. 太阳能学报, 2014, 35(10): 1930-1935.
CHEN J, WANG Q, LI S L, et al.Study of optimization design method for wind turbine airfoil combining airfoil integrated theory and B-spline[J]. Acta energiae solaris sinica, 2014, 35(10): 1930-1935.
[12] 樊华羽, 詹浩, 程诗信, 等. 基于α-stable分布的多目标粒子群算法研究及应用[J]. 西北工业大学学报, 2019, 37(2): 232-241.
FAN H Y, ZHAN H, CHENG S X, et al.Research and application of multi-objective particle swarm optimization algorithm based on α-stable distribution[J]. Journal of Northwestern Polytechnical University, 2019, 37(2): 232-241.
基金
重庆市基础与前沿研究计划(cstc2016jcyjA0448); 重庆市教委科学技术研究项目(KJ1600628); 制造装备机构设计与控制重庆市重点实验室开放基金(1556031)