由于后掠叶片具有积叠线弯曲的结构特点,导致叶片的弹性轴和扭转轴分离,增强了叶片弯扭耦合效应,致使叶片出现强烈的结构非线性变形,同时,沿叶片展向具有明显的三维流动现象。为高精度模拟后掠型风力机的结构振动、变形和气动载荷,通过超级单元法对风力机叶片和塔架结构进行离散,建立了整机刚-柔耦合多体动力学模型;考虑到后掠叶片形状、振动和变形致使空气沿叶片展向三维流动现象显著,采用螺旋尾涡升力线模型分析气动载荷。为高效精确建立包含机械和流体等多学科耦合的风力机模型,采用多体动力学软件建立机械模型,通过Matlab实现叶片气动载荷计算,基于Simulink协同仿真功能实现整机气弹耦合建模。以某后掠型风力机为对象,仿真分析了整机的气弹响应。数值仿真结果表明:本文理论模型和建模方法能有效模拟后掠型风力机的非线性变形和气弹耦合特性,能为新型降载增效机组的气动性能和结构设计提供指导。
Abstract
Because the back-swept blade is constructed by bending the stacking line, the elastic shaft and torsional shaft are separated which enhances the coupling effect of bending and torsional deformation and the nonlinear characteristics of structural deformation. Furthermore, there is an obvious three-dimensional flow phenomenon along the blade span wise. In order to accurately simulate the structural vibration, deformation and aerodynamic load of a swept wind turbine, the blade and tower structures of the wind turbine are discretized by the super element method, and the rigid-flexible coupling multi-body dynamics model of the whole wind turbine is established. Because the vibration and deformation of back-swept blade when operation should result in the three-dimensional air flow along the blade, the helical trailing vortex method is also applied to compute the aerodynamic load on the blade. In order to simulate the wind turbine with the coupling of mechanism and air fluid, the structural model of wind turbine is built by using the multi-body dynamics software, and the aerodynamic load is computed by the Matlab, and the Simulink with co-simulation function is used to integrate the structural model and aerodynamic model. Accordingly, the structural and aerodynamic response of the wind turbine with the back-swept blades is able to be analyzed in the co-simulation system. The numerical simulation results show that the theoretical model and the method presented in this paper can effectively simulate the nonlinear deformation and aero-elastic coupling characteristics of the back-swept wind turbine. It is useful to design the wind turbine with the back-swept blade and analyze its aero-elastic performance.
关键词
风力机 /
后掠叶片 /
气弹耦合 /
协同仿真 /
升力线 /
稳态响应
Key words
wind turbines /
back-swept blade /
aeroelastic coupling /
co-simulation /
lift line /
steady state response
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王占飞, 夏鸿建, 李德源, 等. 叶片后掠对风轮结构与气动特性的影响研究[J]. 太阳能学报, 2020, 41(11): 285-292.
WANG Z F, XIA H J, LI D Y, et al.Research on effects of structure and aerodynamic characteristics of back-swept blade wind turbines[J]. Acta energiae solaris sinica, 2020, 41(11): 285-292.
[2] 康传明, 张卫民. 利用掠-扭耦合效应降低风电机组叶片载荷的研究[J]. 风能, 2010(8): 58-60.
KANG C M, ZHANG W M.Study on the reduction of wind turbine blade load by the swept-torsion coupling[J]. Wind energy,2010(8): 58-60.
[3] 康传明, 张卫民. 大型后掠自适应风力机叶片的气动扭角设计优化[J]. 空气动力学学报, 2011, 29(4): 518-521.
KANG C M, ZHANG W M.The twist angle design and optimization of large sweep twist blade[J]. Acta aerodynamica sinica, 2011, 29(4): 518-521.
[4] HANSEN M H.Aeroelastic instability problems for wind turbines[J]. Wind energy, 2007, 10(6): 551-577.
[5] 郭坤翔, 夏鸿建, 李德源, 等. 后掠风力机叶片非定常气弹耦合模型与响应分析[J]. 机械工程学报,2022, 58(4): 174-182.
GUO K X, XIA H J, LI D Y, et al.Unsteady aeroelastic coupling model and dynamic response analysis of back-swept blade on wind turbines[J]. Journal of mechanical engineering, 2022, 58(4): 174-182.
[6] WANG L, LIU X W, KOLIOS A.State of the art in the aeroelasticity of wind turbine blades: aeroelastic modelling[J]. Renewable and sustainable energy reviews, 2016, 64: 195-210.
[7] LAGO L I, PONTA F L, OTERO A D.Analysis of alternative adaptive geometrical configurations for the NREL-5 MW wind turbine blade[J]. Renewable energy, 2013, 59: 13-22.
[8] ZHOU X D, HUANG K F, LI Z.Effects of bend-twist coupling on flutter limits of composite wind turbine blades[J]. Composite structures, 2018, 192: 317-326.
[9] WANG L, LIU X W, RENEVIER N, et al.Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory[J]. Energy, 2014, 76: 487-501.
[10] 刘锦阳, 洪嘉振. 刚-柔耦合动力学系统的建模理论研究[J]. 力学学报, 2002(3): 408-415.
LIU J Y, HONG J Z.Study on dynamic modeling theory of rigid-flexible coupling systems[J]. Chinese journal of theoretical and applied mechanics, 2002(3): 408-415.
[11] 蔡国平, 洪嘉振. 中心刚体-柔性悬臂梁系统的动力特性研究[J]. 航空学报, 2004(3): 248-253.
CAI G P, HONG J Z.Dynamic analysis of a flexible hub-beam system[J]. Acta aeronautica et astronautica sinica, 2004(3): 248-253.
[12] ZHAO X Y, PETER M, WU J Y.A new multibody modelling methodology for wind turbine structures using a cardanic joint beam element[J]. Renewable energy, 2007,32(3): 532-546.
[13] 李德源, 莫文威, 夏鸿建, 等. 水平轴风力机柔性叶片气弹耦合分析[J]. 太阳能学报, 2015, 36(3): 734-742.
LI D Y, MO W W, XIA H J, et al.The aeroelastic coupling analysis of flexible blades for a horizontal axis wind turbine[J]. Acta energiae solaris sinica, 2015, 36(3): 734-742.
[14] 何正举. 基于升力线模型的后掠叶片风力机气动性能数值分析[D]. 广州: 广东工业大学, 2019.
HE Z J.Numerical analysis of aerodynamic performance of swept blade wind turbine based on lift line model[D]. Guangzhou: Guangdong University of Technology, 2019.
[15] 王强. 水平轴风力机三维空气动力学计算模型研究[D].北京: 中国科学院研究生院(工程热物理研究所),2014.
WANG Q.Study on 3D aerodynamic computational models of HAWT[D]. Beijing: Chinese Academy of Sciences (Institute of Engineering Thermophysics), 2014.
[16] CHATTOT J J.Helicoidal vortex model for wind turbine aeroelastic simulation[J]. Computers & structures, 2007, 85(11-14): 1072-1079.
[17] QIU Y X. WANG X D, KANG S, et al.Predictions of unsteady HAWT aerodynamics in yawing and pitching using the free vortex method[J]. Renewable energy, 2014,70: 93-106.
[18] BRAATEN M E, GOPINATH A.Aero-structural analysis of wind turbine blades with sweep and winglets: coupling a vortex line method to ADAMS/AeroDyn[C]//ASME 2011 Turbo Expo: Turbine Technical Conference & Exposition, Vancouver, British Columbia, Canada, 2011: 3475-3493.
[19] YU D O, KWON O J.Predicting wind turbine blade loads and aeroelastic response using a coupled CFD-CSD method[J]. Renewable energy, 2014, 70: 184-196.
[20] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al.Definition of a 5-MW reference wind turbine for offshore system development[R] NREL/TP-500-38060, 2009.
[21] JENG D R, KEITH T G, ALIAKBARKHANAFJEH A.Aerodynamic performance prediction of horizontal axis wind turbines[C]//Wind Turbine Dynamics, Toledo, OH, USA, 1981.
[22] HANSEN M H.Aeroelastic properties of backward swept blades[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA, 2011.
基金
国家自然科学基金(51776044; 51105079); 广东省自然科学基金项目(2020A1515010844)