基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究

王万腾, 李楠, 许宏鹏, 徐瑞阳, 张瑾辉

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 448-453.

PDF(2197 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2197 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 448-453. DOI: 10.19912/j.0254-0096.tynxb.2022-0340

基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究

  • 王万腾, 李楠, 许宏鹏, 徐瑞阳, 张瑾辉
作者信息 +

STUDY ON IMPROVING PERFORMANCE OF PEMFC BY FLOW CHANNEL BASED ON NAUTILUS BIONIC STRUCTURE

  • Wang Wanteng, Li Nan, Xu Hongpeng, Xu Ruiyang, Zhang Jinhui
Author information +
文章历史 +

摘要

提出一种基于鹦鹉螺旋转结构的仿生流道并建立三维单相、等温的CFD数值模型进行多物理场模拟研究,该流道进气口位于中心位置,反应气体从流场中心进入,向周围环形流道依次流动。将传统蛇形流道与鹦鹉螺仿生流道进行数值模拟分析,发现鹦鹉螺仿生流道具有反应气体分布更加均匀、除水效果更好、浓差极化损失较小、输出性能更好等优势,相比蛇形流道的峰值电流密度提升46.77%、峰值功率密度提升21.53%。

Abstract

A bionic flow channel based on nautilus structure is proposed and a three-dimensional single phase, isothermal CFD numerical model is established for multi-physical field simulation in present study. The inlet of the flow channel is located in the center, the reactants enter from the center of the flow channel and flow to the surrounding annular flow channel in turn. The traditional serpentine flow channel and the nautilus bionic flow channel are simulated and analyzed. It is found that nautilus bionic flow channel has more uniform distribution of reactants, better water removal, less loss of concentration polarization and better output performance. Compared with the serpentine flow channel, the peak current density increases by 46.77% and the peak power density increases by 21.53%.

关键词

质子交换膜燃料电池 / 流道 / 数值模拟 / 电化学 / 仿生结构 / 鹦鹉螺

Key words

proton exchange membrane fuel cell / flow channel / numerical simulation / electrochemical / bionic structure / nautilus

引用本文

导出引用
王万腾, 李楠, 许宏鹏, 徐瑞阳, 张瑾辉. 基于鹦鹉螺仿生结构的流道对PEMFC性能提升研究[J]. 太阳能学报. 2022, 43(6): 448-453 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0340
Wang Wanteng, Li Nan, Xu Hongpeng, Xu Ruiyang, Zhang Jinhui. STUDY ON IMPROVING PERFORMANCE OF PEMFC BY FLOW CHANNEL BASED ON NAUTILUS BIONIC STRUCTURE[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 448-453 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0340
中图分类号: TK513.5   

参考文献

[1] GUO C J, LU J C, TIAN Z, et al.Optimization of critical parameters of PEM fuel cell using TLBO-DE based on Elman neural network[J]. Energy conversion and management, 2019, 183: 149-158.
[2] LIM B H, MAJLAN E H, DAUD W R W, et al. Effects of flow field design on water management and reactant distribution in PEMFC: a review[J]. Ionics, 2016, 22(3): 301-316.
[3] ZHANG S Y, QU Z G, XU H T, et al.A numerical study on the performance of PEMFC with wedge-shaped fins in the cathode channel[J]. International journal of hydrogen energy, 2021, 46(54): 27700-27708.
[4] CHEN X, YU Z K, YANG C, et al.Performance investigation on a novel 3D wave flow channel design for PEMFC[J]. International journal of hydrogen energy, 2021, 46(19): 11127-11139.
[5] 夏雷, 于泽庭, 许国平, 等. 基于代理模型的三维梯形流道质子交换膜燃料电池结构优化设计[J]. 中国电机工程学报, 2022, 42(6): 2238-2247.
XIA L, YU Z T, XU G P, et al.Optimal design of three-dimensional trapezoidal flow channel proton exchange membrane fuel cell structure based on surrogate model[J]. Proceedings of the CSEE, 2022, 42(6): 2238-2247.
[6] CHEN X, YAO C, LIU Q, et al.Performance study on a stepped flow field design for bipolar plate in PEMFC[J]. Energy reports, 2021, 7: 336-347.
[7] ZHANG S Y, LIU S, XU H T, et al.Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design[J]. Energy, 2022, 239(Part B): 122102.
[8] HUANG H Z, LEI H, LIU M X, et al.Effect of superior mesenteric artery branch structure-based flow field on PEMFC performance[J]. Energy conversion and management, 2020, 226: 113546.
[9] 谢启真, 郑明刚. PEMFC叶脉型仿生流道夹角参数研究[J]. 太阳能学报, 2021, 42(10): 361-366.
XIE Q Z, ZHENG M G.Study on included Angle parameters of PEMFC bionic flow channel with vein type[J]. Acta energiae solaris sinica, 2021, 42(10): 361-366.
[10] 王泽英, 陈涛, 张继伟, 等. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2021, 61(12): 1-9.
WANG Z Y, CHEN T, ZHANG J W, et al.Performance of proton exchange membrane fuel cell based on flow field of bionic structure[J]. Journal of Tsinghua University(natural science), 2021, 61(12): 1-9.
[11] ANYANWU I S, HOU Y Z, XI F Q, et al.Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC[J]. International journal of hydrogen energy, 2019, 44(26): 13807-13819.
[12] SEZGIN B, CAGLAYAN D G, DEVRIM Y, et al.Modeling and sensitivity analysis of high temperature PEM fuel cells by using comsol multiphysics[J]. International journal of hydrogen energy, 2016, 41(23): 10001-10009.
[13] KANCHAN B K, RANDIVE P, PATI S.Numerical investigation of multi-layered porosity in the gas diffusion layer on the performance of a PEM fuel cell[J]. International journal of hydrogen energy, 2020, 45(41): 21836-21847.
[14] YIN B F, XU S, YANG S Y, et al.Influence of micro elliptical groove gas diffusion layer (gdl) on transport behavior of proton exchange membrane fuel cell (PEMFC)[J]. International journal of heat and mass transfer, 2021, 180: 121793.

PDF(2197 KB)

Accesses

Citation

Detail

段落导航
相关文章

/