为使运行人员更加直观快速地评估光伏储能系统的热可靠性,以一个2.5 kW小型光储变换器为对象,基于等效热网络模型,在无弃光限电条件下,研究光伏发电功率和负载需求功率对变换器内功率器件的结温影响规律。结果表明,对于变换器中的单向DC-DC电路而言,其功率器件结温不受变换器负载功率影响,但会随光伏功率的增大而非线性提升。对于变换器中的双向DC-DC电路而言,当储能电池放电时,减小光伏功率和增大负载功率会导致器件结温的非线性提升;而当储能电池充电时,相同条件下的光伏功率和负载功率变化则导致器件结温非线性下降。3阶及以上阶数的多项式模型能够较好描述上述器件结温变化的低阶非线性规律。
Abstract
In order to make the operators evaluate the thermal reliability of photovoltaic energy storage system more intuitively and quickly, taking a 2.5 kW small photovoltaic energy storage converter as the object. Based on the equivalent thermal network model, the influence of photovoltaic power and load demand power on the junction temperature of power devices in the converter is studied under the condition of no light curtailment and power limitation. The results show that the junction temperature of the unidirectional DC-DC converter is not affected by the load power, but increases nonlinearly with the increase of photovoltaic power. For bidirectional DC-DC converter, when the energy storage battery discharges, reducing the photovoltaic power and increasing load power will lead to the nonlinear increase of junction temperature. When the energy storage battery is charged, the variation of photovoltaic power and load power under the same conditions will lead to the nonlinear decrease of device junction temperature. The third-order polynomial model above can well describe the low-order nonlinear law of junction temperature variation of the above devices.
关键词
光伏系统 /
功率变换器 /
功率半导体器件 /
结温 /
损耗 /
热网络模型
Key words
photovoltaic system /
power converters /
power semiconductor devices /
junction temperature /
losses /
thermal network model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李骄阳, 王勇, 杨舒婷, 等. 直流微网中光伏并离网储能系统研究[J]. 太阳能学报, 2017, 38(10): 2879-2886.
LI J Y, WANG Y, YANG S T, et al.Research of PV grid-connected and islanded storage system in DC microgrid[J]. Acta energiae solaris sinica, 2017, 38(10): 2879-2886.
[2] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716.
WANG L N, DENG J, YANG J Y, et al.Junction temperature extraction methods for Si and SiC power devices—a review and possible alternatives[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 703-716.
[3] 钱茜, 张臻, 黄国昆, 等. 基于环境温度、负载率的光伏逆变器温升研究[J]. 太阳能学报, 2019, 40(12): 3519-3525.
QIAN X, ZHANG Z, HUANG G K, et al.Research on temperature rise of inverter based on ambient temperature and load power point[J]. Acta energiae solaris sinica, 2019, 40(12): 3519-3525.
[4] SINTAMAREAN N C, BLAABJERG F, WANG H, et al.Reliability oriented design tool for the new generation of grid connected PV-inverters[J]. IEEE transactions on power electronics, 2015, 30(5): 2635-2644.
[5] PERPINA X, JORDA X, VELLVEHI M, et al.Long-term reliability of railway power inverters cooled by heat-pipe-based systems[J]. IEEE transactions on industrial electronics, 2011, 58(7): 2662-2672.
[6] 唐波, 刘任, 吴卓, 等. 三相电压源逆变器内部IGBT模块温度的求解及评估[J]. 电工电能新技术, 2017, 36(2): 50-58.
TANG B, LIU R, WU Z, et al.Temperature solution and evaluation of IGBT module in three-phase voltage source inverter[J]. Advanced technology of electrical engineering and energy, 2017, 36(2): 50-58.
[7] SANGWONGWANICH A, YANG Y H, SERA D, et al.Mission profile-oriented control for reliability and lifetime of photovoltaic inverters[J]. IEEE transactions on industry applications, 2020, 56(1): 601-610.
[8] SHANG L Q, ZHU W W, LI P W, et al.Maximum power point tracking of PV system under partial shading conditions through flower pollination algorithm[J]. Protection and control of modern power systems, 2018, 3(38): 1-7.
[9] 李培强, 段克会, 董彦婷, 等. 含分布式混合储能系统的光伏直流微网能量管理策略[J]. 电力系统保护与控制, 2017, 45(13) : 42-48.
LI P Q, DUAN K H, DONG Y T, et al.Energy management strategy for photovoltaic DC microgrid with distributed hybrid energy storage system[J]. Power system protection and control, 2017, 45(13): 42-48.
[10] SHER H A, MURTAZA A F, NOMAN A, et al.A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT[J]. IEEE transactions on sustainable energy, 2015, 6(4): 1426-1434.
[11] 万萌, 应展烽, 张伟. 分立型功率MOSFET结温估计的非线性热网络模型和参数辨识方法[J]. 电工技术学报, 2019, 34(12): 2477-2488.
WAN M, YING Z F, ZHANG W.Nonlinear thermal network model and parameter identification method for junction temperature estimation of discrete power MOSFET[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2477-2488.
[12] 李辉, 李洋, 廖兴林, 等. 基于转速控制的双馈风电机组机侧变流器IGBT器件结温波动抑制策略[J]. 电工技术学报, 2017, 32(12): 97-107.
LI H, LI Y, LIAO X L, et al.Insulated gate bipolar transistor junction temperature fluctuation depression strategy of doubly fed wind power converter based on rotor speed control[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 97-107.
[13] 杨俊, 查鲲鹏, 高冲, 等. 直流换流阀晶闸管热阻抗端口特性分析与建模[J]. 中国电机工程学报, 2016, 36(1): 196-204.
YANG J, ZHA K P, GAO C, et al.Study on external characteristics and modelling for thermal impedance of thyrisor in HVDC converter valve[J]. Proceedings of the CSEE, 2016, 36(1): 196-204.
[14] ZHANG L, SUN K, XING Y, et al.A family of five-level dual-buck full-bridge inverters for grid-tied applications[J]. IEEE transactions on power electronics, 2016, 31(10): 7029-7042.
[15] ANURAG A, ACHARYA S, BHATTACHARYA S.An accurate calorimetric loss measurement method for SiC MOSFETs[J]. IEEE journal of emerging and selected topics in power electronics, 2020, 8(2): 1644-1656.
[16] LEMMENS J, VANASSCHE P, DRIESEN J.Optimal control of traction motor drives under electrothermal constraints[J]. IEEE journal of emerging and selected topics in power electronics, 2014, 2(2): 249-263.
基金
国家自然科学基金青年基金(51607091); 智能电网保护和运行控制国家重点实验室开放基金课题(SGNR0000KJJS2007613)