为研究高雷诺数下浮式风力机的涡激运动响应特性,对直径0.5 m,高1 m的浮式圆柱体进行静水拖曳模型试验。试验测试约化速度在5.6~22.6范围内模型的横荡与纵荡运动响应,其雷诺数范围可达7.5×104~3×105。对模型的运动轨迹、涡泄频率以及响应幅值进行研究分析。研究发现:随着约化速度的增大,涡激运动响应幅值先增大后减小;在约化速度为9.4~13.2的范围内模型横荡与纵荡均发生明显锁定现象,在锁定区内涡泄频率接近固有频率0.053 Hz,且纵荡频率是横荡频率的2倍;不同约化速度下纵荡响应幅值均低于横荡响应幅值,横荡运动处于主导地位;在锁定区内模型运动轨迹呈明显的“8”字形。
Abstract
In this paper, a series of cylinder model tests were carried out in a towing tank to study the vortex-induced motion (VIM) response characteristics of floating wind turbine at high Reynolds number. The cylinder tested has a diameter of 0.5 m and a length of 1 m. The sway and surge responses of the model were tested to analyze the motion trajectory, vortex shedding frequency and response amplitude. The reduced velocity is from 5.6 to 22.6, and the Reynolds number is from 75,000 to 300,000. It is shown that the response amplitude of VIM first increases and then decreases with the increase of reduction velocity. The obvious “lock-in” phenomenon occurs under the reduction velocity range of 9.4 to 13.2. In the lock-in region, the vortex shedding frequency is close to the natural frequency of 0.053 Hz, the surge frequency is twice as high as that of sway frequency and the motion trajectory of the model shows an obvious“8”shape. The amplitude of surge is much smaller than that of sway at different reduced velocities, and the sway motion is dominant.
关键词
海上风电 /
涡激运动 /
圆柱体 /
模型试验 /
高雷诺数 /
锁定区
Key words
offshore wind power /
vortex-induced motion /
cylinder /
model test /
high Reynolds number /
lock-in region
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GLANVILLE R S, HALKYARD J E, DAVIES R L, et al.Neptune project:spar history and design considerations[C]//Offshore Technology Conference, OnePetro,Houston, Texas, 1997.
[2] VAN D, RADBOUD R T, VOOGT A, et al.The effect of mooring system and sheared currents on vortex induced motions of truss spars[C]//International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003, 36819: 285-292.
[3] GONCALVES R T, HANNES N H, CHAME M E F, et al. FIM-flow-induced motions of four-column platforms[J]. Applied ocean research, 2020, 95: 102019.
[4] GONCALVES R T, MENEGHINI J R, FUJARRA A L C.Vortex-induced vibration of floating circular cylinders with very low aspect ratio[J]. Ocean engineering, 2018, 154: 234-251.
[5] LIANG Y B, TAO L B, XIAO L F, et al.Experimental and numerical study on vortex-induced motions of a deep-draft semi-submersible[J]. Applied ocean research, 2017, 67: 169-187.
[6] ZHOU Y, SUN Y K, HUANG W P.CFD simulation and experimental study of similarity theories in model experiments of vortex-induced vibration[J]. Journal of ship mechanics, 2020, 24(12):1609-1624.
[7] 李伟. 基于波激和涡激Spar平台垂荡—横摇—纵摇非线性动力响应特性研究[D]. 天津: 天津大学, 2017.
LI W.Study on the nolinear coupled heave-roll-pitch motion characteristics of spar platform based on wave-excitation and vortex-excitatio[J]. Tianjin: Tianjin University, 2017.
[8] 魏东泽, 白兴兰, 黄维平, 等. 半潜式海上风力机涡激运动试验研究[J]. 太阳能学报, 2021, 42(2): 179-184.
WEI D Z, BAI X L, HUANG W P, et al.Experimental study on VIM of semi-submersible offshore wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 179-184.
[9] 孙洪源, 黄维平, 李磊, 等. 基于实验的浮式圆柱体涡激运动研究[J]. 振动与冲击, 2017, 36(3): 93-97.
SUN H Y, HUANG W P, LI L, et al.Tests for vortex induced motions of a floating cylinder[J]. Journal of vibration and shock, 2017, 36(3): 93-97.
[10] 张新曙, 胡晓峰, 尤云祥, 等. 深海多立柱浮式平台涡激运动特性研究[J]. 力学学报, 2016, 48(3): 593-598.
ZHANG X S, HU X F, YOU Y X, et al.Investigation on the characterisitics of vortex induced motion of a deep sea muti-column floating platform[J]. Chinese journal of theoretical and applied mechanics, 2016, 48(3): 593-598.
[11] BIANCHI V, SILVA L S P, CENCI F, et al. Spoiler plate effects on the suppression of vortex-induced motions of a single circular cylinder[J]. Ocean engineering, 2020, 210: 107569.
[12] FUJARRA A L C, ROSETTI G F, DE W J, et al. State-of-art on vortex-induced motion:a comprehensive survey after more than one decade of experimental investigation[C]//International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro, Brazil ,American Society of Mechanical Engineers, 2012, 44915: 561-582.
[13] 李磊, 张兆德, 张吉萍, 等. 考虑流固耦合的Spar型浮式风力机涡激运动特性研究[J]. 太阳能学报, 2020, 41(1): 236-241.
LI L, ZHANG Z D, ZHANG J P, et al.Study on vortex induced motion characteristics of Spar-type floating offshore wind turbine considering fluid-structure interaction[J]. Acta energiae solaris sinica, 2020, 41(1): 236-241.
基金
国家自然科学基金(42006175); 浙江省自然科学基金(LQ20E090004); 舟山市科技计划(2021C21025)