热泵储电是一种利用热泵和热机交替循环实现储能和发电的技术,需要热媒和冷媒来储存热量和冷量。储能过程中低温热媒吸热变为高温热媒,发电过程中高温热媒放热恢复为低温热媒。热媒温度决定了压缩机和透平的温比,对系统的往返效率具有很大影响。该文计算分析基于闭式布雷顿循环的热泵储电系统,结论为高温热媒温度升高可以使往返效率增大,低温热媒温度下降则导致往返效率先增大后减小。在给定的设备效率和损失下,当高温热媒温度为550 ℃时,低温热媒的最优温度为310 ℃,此时系统达到最高往返效率为61.36%。效率拐点主要归因于系统的储能功率随低温热媒温度几乎呈线性变化,而发电功率则近似为低温热媒温度的二次函数。
Abstract
Pumped thermal electricity storage (PTES) technology can alternately utilize heat pump and heat engine cycles to achieve energy storage and power generation. It requires heat and cold mediums to store thermal and cryogenic energy. In the process of energy storage, the low-temperature heat medium absorbs heat and then becomes high-temperature heat medium. In the process of power generation, the high-temperature heat medium reverts to low-temperature heat medium by releasing heat. The heat medium temperature determines the temperature ratios of compressors and turbines, and thus has a great influence on the round-trip efficiency of the PTES system. In this paper, a PTES system based on closed Brayton cycle is calculated and analyzed. It is concluded that the system round-trip efficiency can be improved by increasing the temperature of high-temperature heat medium, while it increases first and then decreases with reducing the temperature of the low-temperature heat medium. Given the equipment efficiencies and losses, when the temperature of the high-temperature heat medium is 550 ℃, the optimal temperature of the low-temperature heat medium is 310 ℃, leading to the highest system round-trip efficiency of 61.36%. The efficiency inflection point is mainly due to that the energy storage power varies almost linearly with the temperature of the low-temperature heat medium, while the generated electricity power is approximately a quadratic function of the temperature of the low-temperature heat medium.
关键词
电能储存 /
热泵 /
储热 /
效率 /
布雷顿循环
Key words
electric energy storage /
heat pump /
thermal storage /
efficiency /
Brayton cycle
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 丁玉龙, 来小康, 陈海生. 储能技术及应用[M]. 北京: 化学工业出版社, 2018.
DING Y L, LAI X K, CHEN H S.Energy storage technology and application[M]. Beijing: Chemical Industry Press, 2018.
[2] STRASSER M N, SELVAM R P.A cost and performance comparison of packed bed and structured thermocline thermal energy storage systems[J]. Solar energy, 2014, 108: 390-402.
[3] CHEN H, CONG T N, YANG W, et al.Progress in electrical energy storage system: a critical review[J]. Progress in natural science, 2009, 19(3): 291-312.
[4] MARGUERRE F.Ueber ein neues Verfahren zur Aufspeicherung elektrischer Energie[J]. Mitteilungen der Vereinigung der Elektrizitätswerke, 1924, 354(55): 27-35.
[5] JONATHAN H.Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100(2): 493-503.
[6] ANDREW S, VERENA J, ROBIN W, et al.Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy conversion and management, 2017, 152: 221-228.
[7] 张琼, 王亮, 徐玉杰, 等. 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38(1): 178-185.
ZHANG Q, WANG L, XU Y J, et al.Research progress in pumped heat electricity storage system: a review[J]. Proceedings of the CSEE, 2018, 38(1): 178-185.
[8] MCTIGUE J D, WHITE A J, MARKIDES C N.Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied energy, 2015, 137: 800-811.
[9] DESRUES T, RUER J, MARTY P, et al.A thermal energy storage process for large scale electric applications[J]. Applied thermal engineering, 2010, 30(5): 425-432.
[10] WHITE A, PARKS G, MARKIDES C N.Thermodynamic analysis of pumped thermal electricity storage[J]. Applied thermal engineering, 2013, 53(2): 291-298.
[11] THESS A.Thermodynamic efficiency of pumped heat electricity storage[J]. Physical review letters, 2013, 111(11): 110602.
[12] 张谨奕, 王含, 白宁, 等. 热泵储电系统的热力学分析[J]. 热力发电, 2020, 49(8): 43-49.
ZHANG J Y, WANG H, BAI N, et al.Thermodynamic analysis for heat pump electricity storage system[J]. Thermal power generation, 2020, 49(8): 43-49.
[13] 卢恒, 戴叶, 邹杨, 等. 交替式热泵热机储能系统及效率分析[J]. 中外能源, 2019, 24(9): 86-96.
LU H, DAI Y, ZOU Y, et al.Alternating heat pump-heat engine energy storage system and its efficiency analysis[J]. Sino-global energy, 2019, 24(9): 86-96.
[14] 孙华, 张鹏, 王建强. 传热储热用熔融硝酸盐及其腐蚀问题[J]. 腐蚀科学与防护技术, 2017, 29(5): 8.
SUN H, ZHANG P, WANG J Q.The molten nitrate salts for heat transfer & thermal storage and related corrosion problems[J]. Corrosion science and protection technology, 2017, 29(5): 8.
[15] LEMMON E W, HUBER M L, MCLINDEN M O.NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP. 9.0.[R]. NIST NSRDS-, 2010.
[16] 曾丹苓, 敖越, 张新铭, 等. 工程热力学[M]. 第3版. 北京: 高等教育出版社, 2002.
ZENG D L, AO Y, ZHANG X M, et al.Engineering thermodynamics[M]. 3rd edition. Beijing: Higher Education Press, 2002.
[17] 祁大同. 离心式压缩机原理[M]. 北京: 机械工业出版社, 2017.
QI D T.Principle of centrifugal compressor[M]. Beijing: China Machine Press, 2017.