RESEARCH PROGRESS AND PROSPECT OF HYDROGEN-RICH GAS FROM BIOMASS TAR PYROLYSIS
Li Xueqin1,2, Wu Youqing1, Lei Tingzhou2, Wu Shiyong1, Liu Peng2, Chen Wenxuan2
Author information+
1. Department of Chemical Engineering for Energy Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; 2. Institute of Urban and Rural Mining, Changzhou University, Changzhou 2131647, China
In this paper, with the aim of exploring a new ways for the preparation of catalysts for production hydrogen-rich gas from the pyrolysis of biomass tar, the removal technology and development status of biomass tar at home and abroad are reviewed, with emphasis on the removal methods of biomass tar and the types of catalysts used. It is clear that the nickel-based catalyst modified by promoters has high catalytic activity in hydrogen-rich gas production from the pyrolysis of biomass tar. Finally, the purification, storage and utilization ways of hydrogen are summarized and prospected, which provides a new idea for the removal of biomass tar and catalyst preparation, provide a theoretical basis for the pyrolysis of biomass tar to produce hydrogen-rich gas.
Li Xueqin, Wu Youqing, Lei Tingzhou, Wu Shiyong, Liu Peng, Chen Wenxuan.
RESEARCH PROGRESS AND PROSPECT OF HYDROGEN-RICH GAS FROM BIOMASS TAR PYROLYSIS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 530-535 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0357
中图分类号:
TK6
TK91
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TURNER J A.Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. [2] NGUYEN D D, NGO S I, LIM Y I, et al.Optimal design of a sleeve-type steam methane reforming reactor for hydrogen production from natural gas[J]. International journal of hydrogen energy, 2019, 44(3): 1973-1987. [3] QIU P H, DU C S, LIU L, et al.Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Na-and Ca-loaded coal[J]. International journal of hydrogen energy, 2018, 43(27): 12034-12048. [4] BAE C D, HO T A, KIM H C, et al.Bulk layered heterojunction as an efficient electrocatalyst for hydrogen evolution[J]. Science advances, 2017, 3(3): 1602215-1602223. [5] ZHANG H B.Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction[J]. Current forestry reports, 2018, 4(1): 6657-6665. [6] KATSUTOSHI, NAGAOKA, TAKAAKI, et al. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst[J]. Science advances, 2017, 3(4): 1602747-1602754. [7] 董长青, 陆强, 胡笑颖. 生物质热化学转化技术[M]. 北京: 科学出版社, 2017. DONG C Q, LU Q, HU X Y.Biomass thermochemical transformation technology[M]. Beijing: Science Press, 2017. [8] MATSUMURA Y, MINOWA T, POTIC B, et al.Biomass gasification in near- and super-critical water: status and prospects[J]. Biomass & bioenergy, 2005, 29(4): 269-292. [9] QIU Z, CHEN L.Progress and prospect of biomass gasification[J]. Rural energy, 2002, 3(4): 16-19. [10] SAFARI F, TAVASOLI A, ATAEJ A, et al.Hydrogen and syngas production from gasification of lignocellulosic biomass in supercritical water media[J]. International journal of recycling of organic waste in agriculture, 2015, 4(2): 121-125. [11] JESS A.Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels[J]. Fuel, 1996, 75(12): 1441-1448. [12] 石元春. 我国生物质能源发展综述[J]. 智慧电力, 2017, 45(7): 1-5, 42. SHI Y C.A review of the development of biomass energy in my country[J]. Smart power, 2017, 45(7): 1-5, 42. [13] KINOSHITA C M, WANG Y, ZHOU J.Tar formation under different biomass gasification conditions[J]. Journal of analytical & applied pyrolysis, 1994, 29(2):169-181. [14] YU Q Z, BRAGE C, CHEN G X, et al.Temperature impact on the formation of tar from biomass pyrolysis in a free-fall reactor[J]. Journal of analytical and applied pyrolysis, 1997, 40(97): 481-489. [15] ABHIjEET P, SWAGATHNATH G, RANGABHASHIYAM S, et al. Prediction of pyrolytic product composition and yield for various grass biomass feedstocks[J]. Biomass conversion and biorefinery, 2020, 10(3): 663-674. [16] 陶君. 生物质气化焦油脱除方法研究进展[J]. 生物化工, 2016, 2(6): 78-80. TAO J.Research progress on removal method of biomass gasification tar[J]. Biological chemical engineering, 2016, 2(6): 78-80. [17] OMA A, SROB C, MOB D.The state of renewable energy development in South Africa: an overview[J]. Alexandria engineering journal, 2021, 60(6): 5077-5093. [18] 陶君. 镍基催化剂催化转化生物质焦油典型组分的研究[D]. 北京: 华北电力大学, 2015. TAO J.Research on the catalytic conversion of biomass tar model compounds using ni-based catalysts[D]. Beijing: North China Electric Power University, 2015. [19] 韩枫涛. 白云石为催化剂的生物质气化实验研究[D]. 包头: 内蒙古科技大学, 2017. HAN F T.Experimental study on biomass gasification with dolomite as catalyst[D]. Baotou: Inner Mongolia University of Science and Technology, 2017. [20] 王笑, 高宁博. 生物质气化重整技术的研究进展[J]. 生物质化学工程, 2017, 51(2): 48-56. WANG X, GAO N B.Review of reforming technology of biomass gasification[J]. Biomass chemical engineering, 2017, 51(2): 48-56. [21] FUCHS J, SCHMID J C, MUELLER S, et al.Dual fluidized bed gasification of biomass with selective carbon dioxide removal and limestone as bed material: a review[J]. Renewable and sustainable energy reviews, 2019, 107(2): 212-231. [22] 蒋剑春, 阴秀丽, 孙荣峰, 等. 农林剩余物制备生物燃气关键技术研究[J]. 科技创新导报, 2018(35): 242-243. JIANG J C, YIN X L, SUN R F, et al.Research on key technologies for biogas production from agricultural and forestry residues[J]. Science and technology innovation herald, 2018(35): 242-243. [23] YANG X Q, XU S P, XU H L, et al.Nickel supported on modified olivine catalysts for steam reforming of biomass gasification tar[J]. Catalysis communications, 2009, 11(5): 383-386. [24] 孟俊光, 王小波, 赵增立, 等. 改性橄榄石对C7H8/CO2催化重整的影响[J]. 燃料化学学报, 2017, 45(3): 295-302. MENG J G, WANG X B, ZHAO Z L, et al.Effects of modified olivine on C7H8/CO2 catalytic reforming[J]. Journal of fuel chemistry, 2017, 45(3): 295-302. [25] 魏良元. 生物质钙基催化水蒸气气化制氢特性研究[D]. 武汉: 华中科技大学, 2014. WEI L Y.Study on the characteristics of biomass calcium-based catalytic steam gasification for hydrogen production[D]. Wuhan: Huazhong University of Science and Technology, 2014. [26] SOOMRO A, CHEN S, MA S, et al.Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process[J]. Energy & environment, 2018, 29(6): 839-867. [27] ZHOU S Y, CHEN Z Z, GONG H J, et al.Low-temperature catalytic steam reforming of toluene as a biomass tar model compound over three-dimensional ordered macroporous Ni-Pt/Ce1-xZrxO2 catalysts[J]. Applied catalysis A: general, 2020, 607: 117859-117870. [28] XIE Y, SHEN L H, XIAO J, et al.Experimental research on biomass gasification and reforming to produce hydrogen-rich gas[J]. Journal of Xi’an Jiaotong University, 2008, 42(5): 634-638. [29] 杨延涛. 生物质气化合成醇基液体燃料的催化剂体系及工艺研究[D]. 郑州: 河南农业大学, 2019. YANG Y T.Research on catalyst system and process for synthesis of alcohol-based liquid fuel by biomass gasification[D]. Zhengzhou: Henan Agricultural University, 2019. [30] 徐耀武,徐振刚. 煤化工手册中煤煤化工技术与工程[M]. 北京: 化学工业出版社, 2013. XU Y W, XU Z G.Coal and coal chemical industry Technology and engineering in the coal chemical industry manual[M]. Beijing: Chemical Industry Press, 2013. [31] 日本煤气协会. 用油、气制造煤气与合成气[M]. 石油化学工业出版社, 1976. Japan Gas Association.Production of gas and syngas from oil and gas[M]. Petrochemical industry press, 1976. [32] LI J, TAO J Y, YAN B B, et al.Microwave reforming with char-supported nickel-cerium catalysts: a potential approach for thorough conversion of biomass tar model compound[J]. Applied energy, 2020, 261: 114375-114386. [33] LI B, YANG H P, WEI L Y, et al.Absorption-enhanced steam gasification of biomass for hydrogen production: effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification[J]. International journal of hydrogen energy, 2017, 42(9): 5840-5848. [34] 韩雪, 王亚飞, 郝红蕊, 等. 稀土金属在生物乙醇制氢及其相关反应中的应用[J]. 中国稀土学报, 2015, 33(3): 257-272. HAN X, WANG Y F, HAO H R, et al.Application of rare earth metals in bioethanol hydrogen production and related reactions[J]. Chinese journal of rare earth, 2015, 33(3): 257-272. [35] 卢雯婷,陈敬超, 冯晶, 等. 贵金属催化剂的应用研究进展[J]. 稀有金属材料与工程, 2012, 41(1): 184-188. LU W T, CHEN J C, FENG J, et al.Research progress of noble metal catalyst application[J]. Rare metal materials and engineering, 2012, 41(1): 184-188. [36] PARK J E, KOO K Y, JUNG U H, et al.Syngas production by combined steam and CO2 reforming of coke oven gas over highly sinter-stable La-promoted Ni/MgAl2O4 catalyst[J]. International journal of hydrogen energy, 2015, 40(40): 13909-13917. [37] KELLER M, LEION H, MATTISSON T.Use of CuO/MgAl2O4 and La0.8Sr0.2FeO3/γ-Al2O3 in chemical looping reforming system for tar removal from gasification gas[J]. Aiche journal, 2016, 62(1): 38-45. [38] 陈伟军. 膜分离技术在渣油加氢装置中的应用[J]. 石油化工, 2021, 50(10): 1090-1094. CHEN W J.Application of membrane separation technology in residue hydrogenation unit[J]. Petrochemical industry, 2021, 50(10): 1090-1094. [39] 白尚奎, 周伟民, 田婷婷, 等. 膜分离与变压吸附耦合技术在炼厂氢气回收中的应用[J]. 天然气化工(C1化学与化工), 2021, 46(1): 113-117. BAI S K, ZHOU W M, TIAN T T, et al.Application of membrane separation and pressure swing adsorption coupling technology in refinery hydrogen recovery[J]. Natural gas chemical industry(C1 chemistry and chemical industry), 2021, 46(1): 113-117. [40] 周天宇. 膜与深冷联合/耦合回收乙烯裂解气中的氢气[D]. 大连: 大连理工大学, 2016. ZHOU T Y.Recovering hydrogen from ethylene cracked gas by membrane-cryogenic combined/hybrid process[D]. Dalian: Dalian University of Technology, 2016.