PEM电解水制氢技术的研究现状与应用展望

马晓锋, 张舒涵, 何勇, 朱燕群, 王智化

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 420-427.

PDF(1862 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1862 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 420-427. DOI: 10.19912/j.0254-0096.tynxb.2022-0360

PEM电解水制氢技术的研究现状与应用展望

  • 马晓锋, 张舒涵, 何勇, 朱燕群, 王智化
作者信息 +

RESEARCH STATUS AND APPLICATION PROSPECT OF PEM ELECTROLYSIS WATER TECHNOLOGY FOR HYDROGEN PRODUCTION

  • Ma Xiaofeng, Zhang Shuhan, He Yong, Zhu Yanqun, Wang Zhihua
Author information +
文章历史 +

摘要

基于4种电解水制氢技术性能的差异和优劣,对PEM电解槽的膜电极、多孔传输层、双极板的研究现状进行总结并展望,最后结合PEM电解水制氢技术的优势,分析该技术成本发展趋势并展望该技术的应用场景和发展方向。

Abstract

Based on the performance differences and advantages and disadvantages of four kinds of water electrolysis hydrogen production technologies, the research status of membrane electrode, porous transport layer and bipolar plate in PEM electrolytic cell is summarized and prospected. Finally, combining with the advantages of PEM electrolytic water hydrogen production technology, the cost trend of this technology is analyzed and the application scenarios and development direction of this technology are predicted.

关键词

催化剂 / 制氢 / 膜电极 / 多孔传输层 / 双极板 / 催化剂回收

Key words

catalysts / hydrogen production / polymer membrane electrodes / porous transport layer / bipolar plate / catalyst recovery

引用本文

导出引用
马晓锋, 张舒涵, 何勇, 朱燕群, 王智化. PEM电解水制氢技术的研究现状与应用展望[J]. 太阳能学报. 2022, 43(6): 420-427 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0360
Ma Xiaofeng, Zhang Shuhan, He Yong, Zhu Yanqun, Wang Zhihua. RESEARCH STATUS AND APPLICATION PROSPECT OF PEM ELECTROLYSIS WATER TECHNOLOGY FOR HYDROGEN PRODUCTION[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 420-427 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0360
中图分类号: TK91   

参考文献

[1] HU G P, CHEN C, LU H T, et al.A review of technical advances, barriers, and solutions in the power to hydrogen (p2h) roadmap[J]. Engineering, 2020, 6(12): 1364-1380.
[2] MILLER H A, BOUZEK K, HNAT J, et al.Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sustainable energy & fuels, 2020, 4(5): 2114-2133.
[3] XUE F M, SU J C, LI P P, et al.Application of proton exchange membrane electrolysis of water hydrogen production technology in power plant[J]. Earth and environmental science, 2021, 631(1): 012079.
[4] TENHUMBERG N, BÜKER K. Ecological and economic evaluation of hydrogen production by different water electrolysis technologies[J]. Chemie ingenieur technik, 2020, 92(10): 1586-1595.
[5] LENG Y J, CHEN G, MENDOZA A J, et al.Solid-state water electrolysis with an alkaline membrane[J]. Journal of the American Chemical Society, 2012, 134(22): 9054-9057.
[6] BEYRAGHI F, MIRFARSI S H, ROWSHANZAMIR S, et al.Optimal thermal treatment conditions for durability improvement of highly sulfonated poly(ether ether ketone) membrane for polymer electrolyte fuel cell applications[J]. International journal of hydrogen energy, 2020, 45(24): 13441-13458.
[7] NAOKI A, MAKOTO A, SHINSUKE S, et al.Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications[J]. Journal of the American Chemical Society, 2006, 128: 1762-1769.
[8] CARMO M, FRITZ D L, MERGEL J, et al.A comprehensive review on PEM water electrolysis[J]. International journal of hydrogen energy, 2013, 38(12): 4901-4934.
[9] WEI C, XU Z J.The comprehensive understanding of 10?mA/cm2 as an evaluation parameter for electrochemical water splitting[J]. Small methods, 2018, 2(11): DOI:10.1002/smtd.201800168.
[10] CHEN Z J, DUAN X G, WEI W, et al. Electrocatalysts for acidic oxygen evolution reaction: achievements and perspectives[J]. Nano energy, 2020, 78: DOI: 10.1016/j.nanoen.2020.105392.
[11] HARTIG-WEISS A, TOVINI M F, GASTEIGER H A, et al.OER catalyst durability tests using the rotating disk electrode technique: the reason why this leads to erroneous conclusions[J]. ACS applied energy materials, 2020, 3(11): 10323-10327.
[12] ROSSMEISL J, LOGADOTTIR A, NØRSKOV J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chemical physics, 2005, 319(1-3): 178-184.
[13] YU H R, DANILOVIC N, WANG Y, et al.Nano-size IrOx catalyst of high activity and stability in PEM water electrolyzer with ultra-low iridium loading[J]. Applied catalysis B: environmental, 2018, 239: 133-146.
[14] KASIAN O, GEIGER S, LI T, et al.Degradation of iridium oxides via oxygen evolution from the lattice: correlating atomic scale structure with reaction mechanisms[J]. Energy & environmental science, 2019, 12(12): 3548-3555.
[15] GUO H, FANG Z, Li H, et al.Rational design of Rhodium-iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution[J]. ACS Nano, 2019, 13(11): 13225-13234.
[16] PI Y C, SHAO Q, WANG P T, et al.General formation of monodisperse IrM(M=Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting[J]. Advanced functional materials, 2017, 27(27): 1700886.
[17] XU J Y, LIAN Z, WEI B, et al.Strong electronic coupling between ultrafine iridium-ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media[J]. ACS catalysis, 2020, 10(6): 3571-3579.
[18] AIZAZ U D M, IRFAN S, DAR S U, et al. Synthesis of 3d IrRuMn sphere as a superior oxygen evolution electrocatalyst in acidic environment[J]. Chemistry, 2020, 26(25): 5662-5666.
[19] CROSS M W, SMITH R P, VARHUE W J.RuO2 nanorods as an electrocatalyst for proton exchange membrane water electrolysis[J]. Micromachines(basel), 2021, 12(11): 1412.
[20] PHAM T S, PHAM H H, DO C L.IrxRu1-xO2 nanoparticles with enhanced electrocatalytic properties for the oxygen evolution reaction in proton exchange membrane water electrolysis[J]. Journal of electronic materials, 2021, 50(3): 1239-1246.
[21] NONG H N, OH H S, REIER T, et al.Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting[J]. Angewandte chemie international Ed in English, 2015, 54(10): 2975-2979.
[22] MILLET P, MBEMBA N, GRIGORIEV S A, et al.Electrochemical performances of PEM water electrolysis cells and perspectives[J]. International journal of hydrogen energy, 2011, 36(6): 4134-4142.
[23] LIU L F.Platinum group metal free nano-catalysts for proton exchange membrane water electrolysis[J]. Current opinion in chemical engineering, 2021, 34: 100743.
[24] CORRALES-SÁNCHEZ T, AMPURDANÉS J, URAKAWA A. MoS2-based materials as alternative cathode catalyst for PEM electrolysis[J]. International journal of hydrogen energy, 2014, 39(35): 20837-20843.
[25] CAO B, VEITH G M, NEUEFEIND J C, et al.Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(51): 19186-19192.
[26] XU W, SCOTT K.The effects of ionomer content on PEM water electrolyser membrane electrode assembly performance[J]. International journal of hydrogen energy, 2010, 35(21): 12029-12037.
[27] HOLZAPFEL P, BÜHLER M, VAN P C, et al. Directly coated membrane electrode assemblies for proton exchange membrane water electrolysis[J]. Electrochemistry communications, 2020, 110: 106640.
[28] KLINGELE M, BRITTON B, BREITWIESER M, et al.A completely spray-coated membrane electrode assembly[J]. Electrochemistry communications, 2016, 70: 65-68.
[29] MINKE C, SUERMANN M, BENSMANN B, et al.Is Iridium demand a potential bottleneck in the realization of large-scale PEM water electrolysis?[J]. International journal of hydrogen energy, 2021, 46(46): 23581-23590.
[30] CARMO M, KEELEY G P, HOLTZ D, et al.PEM water electrolysis: innovative approaches towards catalyst separation, recovery and recycling[J]. International journal of hydrogen energy, 2019, 44(7): 3450-3455.
[31] SREERAJ P, VEDARAJAN R, RAJALAKSHMI N, et al.Screening of recycled membrane with crystallinity as a fundamental property[J]. International journal of hydrogen energy, 2021, 46(24): 13020-13028.
[32] SHARMA R, GYERGYEK S, LUND P B, et al.Recovery of pt and ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of pt by direct redeposition of the dissolved precursor on carbon[J]. ACS applied energy materials, 2021, 4(7): 6842-6852.
[33] PANCHENKO O, BORGARDT E, ZWAYGARDT W, et al.In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy[J]. Journal of power sources, 2018, 390: 108-115.
[34] MO J K, DEHOFF R R, PETER W H, et al.Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production[J]. International journal of hydrogen energy, 2016, 41(4): 3128-3135.
[35] STEEN S M, MO J K, KANG Z Y, et al.Investigation of titanium liquid/gas diffusion layers in proton exchange membrane electrolyzer cells[J]. International journal of green energy, 2016, 14(2): 162-170.
[36] LI H, FUJIGAYA T, NAKAJIMA H, et al.Optimum structural properties for an anode current collector used in a polymer electrolyte membrane water electrolyzer operated at the boiling point of water[J]. Journal of power sources, 2016, 332: 16-23.
[37] ITO H, MAEDA T, NAKANO A, et al.Experimental study on porous current collectors of PEM electrolyzers[J]. International journal of hydrogen energy, 2012, 37(9): 7418-7428.
[38] ZHAN Z G, XIAO J S, LI D Y, et al.Effects of porosity distribution variation on the liquid water flux through gas diffusion layers of PEM fuel cells[J]. Journal of power sources, 2006, 160(2): 1041-1048.
[39] LEE J K, LEE C H, BAZYLAK A. Pore network modelling to enhance liquid water transport through porous transport layers for polymer electrolyte membrane electrolyzers[J]. Journal of power sources, 2019, 437(15): 226910.1-226910.9.
[40] LIU C, CARMO M, BENDER G, et al.Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers[J]. Electrochemistry communications, 2018, 97: 96-99.
[41] GAGO A S, ANSAR S A, SARUHAN B, et al.Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers[J]. Journal of power sources, 2016, 307: 815-825.
[42] LÆDRE S, KONGSTEIN O E, OEDEGAARD A, et al. Materials for proton exchange membrane water electrolyzer bipolar plates[J]. International journal of hydrogen energy, 2017, 42(5): 2713-2723.
[43] ROJAS N, SÁNCHEZ-MOLINA M, SEVILLA G, et al. Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions[J]. International journal of hydrogen energy, 2021, 46(51): 25929-25943.

PDF(1862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/