基于场景聚类的净负荷优化控制策略

韩仲雅, 张国斌, 翟宇卓, 牛玉广

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 39-47.

PDF(1736 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1736 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 39-47. DOI: 10.19912/j.0254-0096.tynxb.2022-0362

基于场景聚类的净负荷优化控制策略

  • 韩仲雅1, 张国斌2, 翟宇卓1, 牛玉广1
作者信息 +

OPTIMAL CONTROL STRATEGY OF NET LOAD BASED ON SCENARIO CLUSTERING

  • Han Zhongya1, Zhang Guobin2, Zhai Yuzhuo1, Niu Yuguang1
Author information +
文章历史 +

摘要

随着风电等间歇性电源大比例并网,其电源波动性对电网造成的影响不可忽视,同时需求侧用电负荷的波动同样影响着电网运行。针对上述问题,现大多采用单一的控制策略,其控制效果虽然可达到要求,但未分析不同情况下不同的风电和负荷特性,采用统一的控制策略易造成资源不必要的浪费。该文提出一种基于场景聚类的优化控制。场景聚类考虑了风电场出力波动和需求侧用电负荷波动两个因素,提取净负荷数据典型场景,依据其不同特性提出不同控制方案,达到优化目的。最后通过算例分析,证实这种优化控制方案可在不降低原本控制效果的基础上减小成本,提高用户舒适度,具有可行性和有效性。

Abstract

With the large proportion of intermittent power sources such as wind power connected to the grid, the impact of power supply fluctuation on the power grid cannot be ignored. At the same time, the fluctuation of power load on the demand side also affects the operation of the power grid. For the above problems, most of them adopt a single control strategy. Although the control effect can meet the requirements, different wind power and load characteristics are not analyzed under different conditions. It is easy to cause unnecessary waste of resources by using a unified control strategy. This paper presents an optimal control based on scene clustering. Scene clustering considers two factors, output fluctuation of wind farm and power load fluctuation on demand side. Extract typical scenarios of net load data. Based on their different characteristics, and different control schemes are proposed to achieve the optimization purpose. Finally, an example is analyzed to verify the feasibility and effectiveness of this optimal control scheme, which can reduce costs and improve user comfort without reducing the original control effect.

关键词

需求侧管理 / 储能 / 风电 / 粒子群算法 / 优化控制系统 / 场景聚类

Key words

demand side management / energy storage / wind power / particle swarm optimization(PSO) / optimal control systems / scene clustering

引用本文

导出引用
韩仲雅, 张国斌, 翟宇卓, 牛玉广. 基于场景聚类的净负荷优化控制策略[J]. 太阳能学报. 2023, 44(7): 39-47 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0362
Han Zhongya, Zhang Guobin, Zhai Yuzhuo, Niu Yuguang. OPTIMAL CONTROL STRATEGY OF NET LOAD BASED ON SCENARIO CLUSTERING[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 39-47 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0362
中图分类号: TM734   

参考文献

[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
TAN X D, LIU J, XU Z C, et al.Power supply and demand balance during the 14th five-year plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric power, 2021, 54(5): 1-6.
[2] 高亚静, 吕孟扩, 梁海峰, 等. 基于离散吸引力模型的用电需求价格弹性矩阵[J]. 电力系统自动化, 2014, 38(13): 103-107, 144.
GAO Y J, LYU M K, LIANG H F, et al.Power demand price elasticity matrix based on discrete attraction model[J]. Automation of electric power systems, 2014, 38(13): 103-107, 144.
[3] 李建华, 周灵刚. 面向需求响应的峰谷分时定价策略量化研究[J]. 浙江电力, 2020, 39(12): 58-64.
LI J H, ZHOU L G.Quantitative research on demand response oriented peak-valley TOU pricing strategy[J]. Zhejiang electric power, 2020, 39(12): 58-64.
[4] 李浩闪, 李燕青. 分时电价下考虑用户侧响应的日前调度计划建模与分析[J]. 华东电力, 2014, 42(2): 314-318.
LI H S, LI Y Q.Day-ahead generation dispacth modeling and analysis considering demand response under time-of-use price[J]. East China electric power, 2014, 42(2): 314-318.
[5] 王建波, 王春亮, 魏强, 等. 用户侧储能参与需求响应的多时间尺度优化调度策略研究[J]. 电气工程学报, 2021, 16(3): 115-122.
WANG J B, WANG C L, WEI Q, et al.Research on multiple time scales optimal dispatching strategy for user side energy storage participating in demand response[J]. Journal of electrical engineering, 2021, 16(3): 115-122.
[6] 徐雁飞, 宋天昊, 袁铁江, 等. 风-储联合发电系统容量优化配置及其影响因素分析[J]. 电力电容器与无功补偿, 2021, 42(1): 173-180.
XU Y F, SONG T H, YUAN T J, et al.Capacity optimization configuration of windstorage power generation system[J]. Power capacitor & reactive power compensation, 2021, 42(1): 173-180.
[7] 余全全, 谢丽蓉. 风电并网多目标混合储能系统优化配置[J]. 现代电子技术, 2021, 44(22): 111-115.
YU Q Q, XIE L R.Optimal configuration of multiobjective hybrid energy storage system for wind power gridconnection[J]. Modern electronics technique, 2021, 44(22): 111-115.
[8] 丁明, 解蛟龙, 刘新宇, 等. 面向风电接纳能力评价的风资源/负荷典型场景集生成方法与应用[J]. 中国电机工程学报, 2016, 36(15): 4064-4072.
DING M, XIE J L, LIU X Y, et al.The generation method and application of wind resources/load typical scenario set for evaluation of wind power grid integration[J]. Proceedings of the CSEE, 2016, 36(15): 4064-4072.
[9] 武晓朦, 刘欣雨, 苏成果, 等. 基于K-均值聚类的典型场景配电网动态无功优化[J]. 现代电子技术, 2021, 44(11): 151-154.
WU X M, LIU X Y, SU C G, et al.Typical scenario power distribution network’s dynamic reactive power optimization based on K-means clustering[J]. Modern electronics technique, 2021, 44(11): 151-154.
[10] 李国庆, 陆为华, 李赫, 等. 基于模糊C-均值聚类的时序概率潮流快速计算方法[J]. 电力自动化设备, 2021, 41(4): 116-122.
LI G Q, LU W H, LI H, et al.Fast calculation method of time sequence probabilistic power flow based on fuzzy C-means clustering[J]. Electric power automation equipment, 2021, 41(4): 116-122.
[11] 黄紫成, 李影. 基于模糊C-均值聚类的缺失数据填充方法[J]. 吉首大学学报, 2020, 41(2): 23-26.
HUANG Z C, LI Y.Missing value filling method based on fuzzy C-means algorithm[J]. Journal of Jishou University, 2020, 41(2): 23-26.
[12] 张里, 王兰, 李红军, 等. 基于聚类分析的风电功率预测数据预处理方法[J]. 可再生能源, 2018, 36(12): 1871-1876.
ZHANG L, WANG L, LI H J, et al.Wind power prediction data pre-processing technology based on clustering approach[J]. Renewable energy resources, 2018, 36(12): 1871-1876.
[13] 王昱洁, 孙英楷, 韩少卿. 峰谷分时电价时段划分方法研究[J]. 中小企业管理与科技(中旬刊), 2020(9): 84-87.
WANG Y J, SUN Y K, HAN S Q.Research on the time division method of peak-valley time-of-use tariff[J]. Management & technology of SME, 2020(9): 84-87.
[14] 李建华, 周灵刚. 面向需求响应的峰谷分时定价策略量化研究[J]. 浙江电力, 2020, 39(12): 58-64.
LI J H, ZHOU L G.Quantitative research on demand response oriented peak-valley TOU pricing strategy[J]. Zhejiang electric power, 2020, 39(12): 58-64.
[15] 王建波, 王春亮, 魏强, 等. 用户侧储能参与需求响应的多时间尺度优化调度策略研究[J]. 电气工程学报, 2021, 16(3): 115-122.
WANG J B, WANG C L, WEI Q, et al.Research on multiple time scales optimal dispatching strategy for user side energy storage participating in demand response[J]. Journal of electrical engineering, 2021, 16(3): 115-122.
[16] 陈裕, 张怡, 谢俊峰. 自适应滑动平均与小波包分解平抑风电波动[J]. 控制工程, 2021, 28(7): 1281-1288.
CHEN Y, ZHANG Y, XIE J F.Adaptive moving average and wavelet packet decomposition to smooth wind power fluctuation[J]. Control engineering of China, 2021, 28(7): 1281-1288.
[17] 李昂, 董潇阳, 纪瑾, 等. 改进型粒子群算法的电力系统无功优化研究[J]. 电工技术, 2022(3): 11-13, 17.
LI A, DONG X Y, JI J, et al.Research on reactive power optimization of power system based on improved particle swarm optimization[J]. Electric engineering, 2022(3): 11-13, 17.
[18] 张超. 基于改进粒子群算法的电力负荷预测模型[J]. 技术与市场, 2021, 28(6): 37-39.
ZHANG C.Power load forecasting model based on improved particle swarm optimization algorithm[J]. Technology and market, 2021, 28(6): 37-39.
[19] 陈宏伟, 王万成, 王继拓. 混合自适应粒子群算法在电力经济调度中的应用[J]. 计算机与现代化, 2019(3): 45-50.
CHEN H W, WANG W C, WANG J T.Application of hybrid adaptive particle swarm optimization algorithm in power economic dispatch[J]. Computer and modernization, 2019(3): 45-50.
[20] 王宽, 李萍, 汤航, 等. 基于改进粒子群算法优化BP网络的短期风电功率预测[J]. 工业控制计算机, 2021, 34(11): 119-121.
WANG K, LI P, TANG H, et al.Short term wind power prediction based on improved particle swarm optimization BP network[J]. Industrial control computer, 2021, 34(11): 119-121.
[21] 邢海燕, 王松弘泽, 弋鸣, 等. 基于IPSO-GRU深度学习算法的海底管道缺陷尺寸磁记忆定量反演模型[J]. 工程科学学报, 2022, 44(5): 911-919.
XING H Y, WANG S H Z, YI M, et al. Metal magnetic memory quantitative inversion model based on IPSO-GRU algorithm for detecting submarine pipeline defect[J]. Chinese journal of engineering, 2022, 44(5): 911-919.
[22] 陈博文, 邹海. 总结性自适应变异的粒子群算法[J]. 计算机工程与应用, 2022, 58(8): 67-75.
CHEN B W, ZOU H.Self-conclusion and self-adaptive variation particle swarm optimization[J]. Computer engineering and applications, 2022, 58(8): 67-75.

基金

2021年内蒙古自治区科技重大专项项目(2021ZD0026)

PDF(1736 KB)

Accesses

Citation

Detail

段落导航
相关文章

/