为获得风力机近尾流风速在垂直方向和水平方向的变化规律,提出一种测量风力机近尾流区风速的实测方法。针对某沿海滩涂风电场,采用2台搭载风速仪的无人机对近尾流区进行测量。结果表明:垂直方向,尾流和来流风速比值在1.0D~2.5D处(D为风轮直径)随着高度的增加呈先减小后增大的趋势,在轮毂中轴线处存在最小值0.53~0.68;风速比值沿轮毂中轴线呈非对称分布。0.5D处风速比值分别在上下风轮处存在2个极小值0.56和0.50。水平方向,风速比值在1.0D~3.0D处沿径向距离从左向右呈先减小后增大的趋势,在轮毂中轴线处存在最小值(0.54~0.78);风速比值沿轮毂中轴线呈对称分布,随着风轮下游距离的增加呈扩张趋势。最后给出用于A类风场风力机下游尾流风速剖面的预测公式。
Abstract
A new method is developed to measure the near wake distribution characteristics of wind turbine, by which can obtain the change law of the wake wind velocity in the vertical and horizontal directions. For a coastal beach wind farm, two UAVs (Unmanned Aerial Vehicle, UAV) equipped with anemometers are adopted to measure the near wake. Results show that, in the vertical direction, the wind velocity ratio of wake and inflow decreases firstly and then increases with the increase of the height from 1.0D to 2.5D, D is the diameter of the wind rotor, and the minimum value is 0.53 to 0.68 at the central axis of the hub, and the wind velocity ratio is asymmetrically distributed along the central axis of the hub. There are two minimum values 0.56 and 0.50 appears at 0.5D, which appears at the top and bottom wind rotor respectively. In the horizontal direction, the wind velocity ratio decreases firstly and then increases from left to right along the radial distance from 1.0D to 3.0D, and the minimum value is 0.54 to 0.78 at the central axis of the hub. The wind velocity ratio is symmetrically distributed along the central axis of the hub, and tends to expand with the increase of downstream distance of the rotor. Moreover, the ratio formula of vertical wake to inflow wind velocity profile is given, which can be used to predict downstream wake velocity profile of wind turbine in class A wind field.
关键词
风力机 /
尾流 /
速度分布 /
无人机
Key words
wind turbines /
wakes /
velocity distribution /
unmanned aerial vehicles(UAV)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WHALE J, PAPADOPOULOS K H, ANDERSON C G, et al.A study of the near wake structure of a wind turbine comparing measurements from laboratory and full-scale experiments[J]. Solar energy, 1997, 56: 621-633.
[2] VERMEER L J, SØRENSEN J N, CREPO A. Wind turbine wake aerodynamics[J]. Progress in aerospace science, 2003, 39: 467-510.
[3] SCHEPERS J G. ENDOW: validation and improvement of ECN's wake model[R].2003, ECN-C-03-034.
[4] 田琳琳. 风力机尾流数值模拟及风电场机组布局优化研究[D]. 南京: 南京航空航天大学, 2014.
TIAN L L.Numerical simulation of wind turbine wakes and the study of wind farm layout optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.
[5] ZHANG W, MARKFORT C D, PORTÉ-AGEL F.Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer[J]. Experiment in fluids, 2012, 52: 1219-1235.
[6] 贺德馨. 风工程与工业空气动力学[M]. 北京: 国防工业出版社, 2006: 238-247.
HE D X.Wind engineering and industrial aerodynamics[M]. Beijing: National Defense Industry Press, 2006: 238-247.
[7] EBERLE W R.Wind flow characteristics in the wake of large wind turbines, Vol.I—analytical development[R].DOE/NASA-CR-165380, 1981.
[8] KEANE A, AGUIRRE P, FERCHLAND H, et al.An analytical model for a full wind turbine wake[J]. Journal of physics: conference series, 2016, 753: 032039.
[9] XIE S, ARCHER C.Self-similarity and turbulence characteristics of wind turbine wakes via large-eddy simulation[J]. Wind energy, 2015, 18(10): 1815-1838.
[10] MÜHLE F, BARTL J, HANSEN T H, et al. An experimental study on the effects of winglets on the tip vortex interaction in the near wake of a model wind turbine[J]. Wind energy, 2020, 23: 1286-1300.
[11] 胡丹梅, 渠敬群. 水平轴风力机塔筒近尾流流场PIV实验研究[J]. 可再生能源, 2018, 36(7): 1074-1079.
HU D M, QU J Q.PIV experimental study on the near wake flow of horizontal-axis wind turbine tower[J]. Renewable energy resources, 2018, 36(7): 1074-1079.
[12] 韩玉霞, 汪建文, 刘珍, 等. 基于TR-PIV风力机尾迹拟序结构特征的实验研究[J]. 太阳能学报, 2019, 40(10): 2892-2898.
HAN Y X, WANG J W, LIU Z, et al.Experimental study on coherent structure of wind turbine wake based on TR-PIV[J]. Acta energiae solaris sinica, 2019, 40(10): 2892-2898.
[13] SCHEPERS J G, OBDAM T S, PROSPATHOPOULOS J.Analysis of wake measurements from the ECN wind turbine test site wieringermeer, EWTW[J]. Wind energy, 2012, 15(4): 575-591.
[14] BARTHELMIE R J, FOLKERTS L, ORMEL F T, et al.Offshore wind turbine wakes measured by sodar[J]. Journal of atmospheric and oceanic technology, 2003, 20(4): 466-477.
[15] GAO X X, LI B B, WANG T Y, et al.Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements[J]. Applied energy, 2020, 260: 114272.
[16] 李德顺, 李银然, 李仁年, 等. 水平轴风力机尾流的现场实测及初步分析[J]. 中国科学: 物理学力学天文学, 2016, 46(12): 44-52.
LI D S, LI Y R, LI R N, et al.Field experiment and analysis of the wake behind a horizontal-axis wind turbine[J]. Scientia sinica physica, mechanica & astronomica, 2016, 46(12): 44-52.
[17] 李正农, 胡昊辉, 沈义俊. 六旋翼无人机旋翼转动对测风准确性的影响研究[J]. 实验流体力学, 2019, 33(6):7-14.
LI Z N, HU H H, SHEN Y J.The influence of rotor rotation of hexacopter on wind measurement accuracy[J]. Journal of experiment in fluid mechanics, 2019, 33(6): 7-14.
[18] 李正农, 冯豪, 蒲鸥, 等. 基于六旋翼无人机搭载风速仪的边界层风剖面实测研究[J]. 工程力学, 2021, 38(8): 121-132.
LI Z N, FENG H, PU O, et al.Boundary layer wind profile measurement based on a six-rotor UAV anemometer[J]. Engineering mechanics, 2021, 38(8): 121-132.
[19] 黄本才, 汪丛军. 结构抗风分析原理及应用[M]. 上海: 同济大学出版社, 2008: 28-30.
HUANG B C, WANG C J.Principle and application of structural wind resistance analysis[M]. Shanghai: Tongji University Press, 2008: 28-30.
[20] 朱学敏. V80型风机在乌礁湾风电场的应用[J]. 能源与环境, 2006(5): 102-103, 116.
ZHU X M.Application of V80 wind turbine in Wujiaowan wind farm[J]. Energy and environment, 2006(5): 102-103, 116.
[21] 王同光, 田琳琳, 钟伟, 等. 风能利用中的空气动力学研究进展Ⅱ: 入流和尾流特性[J]. 空气动力学学报, 2022, 40(4): 22-50.
WANG T G, TIAN L L, ZHONG W, et al.Aerodynamic research progress in wind energy II: inflow and wake characteristics[J]. Acta aerodynamica sinica, 2022, 40(4): 22-50.
[22] AITKEN M L, LUNDQUIST J K.Utility-scale wind turbine wake characterization using nacelle-based long-range scanning lidar[J]. Journal of atmospheric and oceanic technology, 2014, 31(7): 1529-1539.
[23] BASTANKHAH M, PORTÉ-AGEL F.A new analytical model for wind-turbine wakes[J]. Renew energy, 2014, 70: 116-123.
基金
国家自然科学基金(51908430; 52178476; 52068019); 潍坊学院博士科研启动基金(2019BS16)