考虑电网可再生能源渗透率的太阳能-燃气系统优化

韩晶, 程堂华, 徐金朝, 王法泽, 王军, Lund Peter

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 80-87.

PDF(2842 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2842 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 80-87. DOI: 10.19912/j.0254-0096.tynxb.2022-0367

考虑电网可再生能源渗透率的太阳能-燃气系统优化

  • 韩晶1, 程堂华1, 徐金朝2, 王法泽2, 王军2,3, Lund Peter2,4
作者信息 +

OPTIMIZATION OF SOLAR-GAS ENERGY SYSTEM CONSIDERING GRID RENEWABLE ENERGY POWER PENETRATION RATES

  • Han Jing1, Cheng Tanghua1, Xu Jinzhao2, Wang Faze2, Wang Jun2,3, Lund Peter2,4
Author information +
文章历史 +

摘要

基于Matlab软件,搭建一种太阳能-燃气耦合供能的综合能源系统,并考虑系统在不同电网可再生能源渗透率下的表现,采用NSGA-Ⅱ多目标优化算法对系统进行经济、环境及节能三方面的优化分析。传统碳税核算表明,以电定热(FEL)模式综合表现最佳。FEL模式下,系统CO2减排率(CDERR)随渗透率增大而显著增大,化石燃料节约率(FFSR)和年度成本节约率(ACSR)受影响次之;在实际渗透率为29.1%情况下,最佳运行决策对应FFSR、ACSR及CDERR分别为38.87%、47.61%、70.19%。敏感性分析表明,碳税增大及天然气价格降低引起ACSR增大。

Abstract

Based on Matlab modelling, an integrated energy system with solar-gas coupled energy supply is built. Considering the performance of the system under different renewable energy penetration rates, the economic, environmental and energy multi-optimization is implemented. The traditional carbon tax accounting shows that the FEL(following electric load) model has the best overall performance. In the FEL mode, the system CDERR (carbon dioxide emission reduction ratio) increases significantly with the increase of the penetration rate, and the FFSR(fuel fossil saving ratio) and ACSR(annual cost saving ratio) are affected secondly and thirdly. Considering the actual penetration rate 29.1%, the optimal operation decision corresponds to FFSR, ACSR and CDERR of 38.87% 47.61% and 70.19%. Sensitivity analysis shows that the increase of carbon tax and the decrease of natural gas price lead to the increase of ACSR.

关键词

太阳能发电 / 多目标优化 / Matlab / NSGA-Ⅱ算法 / 可再生能源 / 电力渗透率

Key words

solar power generation / multi-objective optimization / Matlab / NSGA-Ⅱ algorithm / renewable energy / power penetration

引用本文

导出引用
韩晶, 程堂华, 徐金朝, 王法泽, 王军, Lund Peter. 考虑电网可再生能源渗透率的太阳能-燃气系统优化[J]. 太阳能学报. 2023, 44(7): 80-87 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0367
Han Jing, Cheng Tanghua, Xu Jinzhao, Wang Faze, Wang Jun, Lund Peter. OPTIMIZATION OF SOLAR-GAS ENERGY SYSTEM CONSIDERING GRID RENEWABLE ENERGY POWER PENETRATION RATES[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 80-87 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0367
中图分类号: TK513.5   

参考文献

[1] CHEN Y Z, XU J Z, WANG J, et al.Configuration optimization and selection of a photovoltaic-gas integrated energy system considering renewable energy penetration in power grid[J]. Energy conversion and management, 2022, 254: 115260.
[2] CHEN Y Z, WANG J, LUND P D.Sustainability evaluation and sensitivity analysis of district heating systems coupled to geothermal and solar resources[J]. Energy conversion and management, 2020, 220: 113084.
[3] EBRAHIMI M A, MOGHADAM A J, FARZANEH G M, et al.Proposal and assessment of a novel combined heat and power system: energy, exergy, environmental and economic analysis[J]. Energy conversion and management, 2020, 204: 112307.
[4] EBRAHIMI M A, JABARI M A, FARZANEH G M, et al.Performance investigation of a novel hybrid system for simultaneous production of cooling, heating, and electricity[J]. Sustainable energy technologies and assessments, 2021, 43: 100931.
[5] 汪德成, 李妍, 张群, 等. 冷热电储一体化综合能源系统优化研究[J]. 太阳能学报, 2023, 44(6): 130-136.
WANG D C, LI Y, ZHANG Q, et al.Research on optimization of cooling, heating, electricity and storage multi-energy coupling system[J]. Acta energiae solaris sinica, 2023, 44(6): 130-136.
[6] CHEN Y Z, WANG J, LUND P D.Thermodynamic performance analysis and multi-criteria optimization of a hybrid combined heat and power system coupled with geothermal energy[J]. Energy conversion and management, 2020, 210: 112741.
[7] WU Z X, YOU S J, ZHANG H, et al.Experimental investigations and multi-objective optimization of an air-source absorption heat pump for residential district heating[J]. Energy conversion and management, 2021, 240: 114267.
[8] XU J Z, CHEN Y Z, WANG J, et al.Ideal scheme selection of an integrated conventional and renewable energy system combining multi-objective optimization and matching performance analysis[J]. Energy conversion and management, 2022, 251: 114989.
[9] 任涛, 韩一峰, 韩硕, 等. n型高效光伏组件发电性能研究[J]. 太阳能学报, 2022, 43(12): 13-18.
REN T, HAN Y F, HAN S, et al.Power generation performance study of high-efficiency n-type PV module[J]. Acta energiae solaris sinica , 2022, 43(12): 13-18.
[10] FENG L J, DAI X Y, MO J R, et al.Comparison of capacity design modes and operation strategies and calculation of thermodynamic boundaries of energy-saving for CCHP systems in different energy supply scenarios[J]. Energy conversion and management, 2019, 188: 296-309.
[11] REN F K, WEI Z Q, ZHAI X Q.Multi-objective optimization and evaluation of hybrid CCHP systems for different building types[J]. Energy, 2021, 215: 119096.
[12] REN F K, WANG J J, ZHU S T, et al. Multi-objective optimization of combined cooling, heating and power system integrated with solar and geothermal energies[J]. Energy conversion and management, 2019, 197: 111866.1-111866.14.
[13] LI L X, YU S W, MU H L, et al.Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies[J]. Energy, 2018, 162: 825-840.
[14] ZHENG C Y, WU J Y, ZHAI X Q.A novel operation strategy for CCHP systems based on minimum distance[J]. Applied energy, 2014, 128: 325-335.
[15] GHERSI D E, AMOURA M, LOUBAR K, et al. Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy[J]. Energy, 2021, 219: 119574.1-119574.18.
[16] 吴启华. 全国可再生能源发电量占比达29.1%[N]. 中国矿业报, 2021.
WU Q H.National renewable energy power generation accounted for 29.1%[N]. China mining news, 2021.
[17] 岳嘉和, 陈果, 宋涛, 等. 基于碳指标的建筑能源优化配置研究[J]. 太阳能学报, 2023, 44(6): 170-177.
YUE J H, CHEN G, SONG T, et al.Optimal allocation study of building energy system based on carbon index[J]. Acta energiae solaris sinica, 2023, 44(6): 170-177.
[18] DEB K.An efficient constraint handling method for genetic algorithms[J]. Computer methods in applied mechanics and engineering, 2000, 186(2-4): 311-338.
[19] ZHANG P, QIAN Y Y, QIAN Q.Multi-objective optimization for materials design with improved NSGA-Ⅱ[J]. Materials today communications, 2021, 28: 102709.
[20] FREITAS S, BRITO M C.Non-cumulative only solar photovoltaics for electricity load-matching[J]. Renewable and sustainable energy reviews, 2019, 109: 271-283.
[21] WANG J J, CHEN Y Z, LIOR N.Exergo-economic analysis method and optimization of a novel photovoltaic/thermal solar-assisted hybrid combined cooling, heating and power system[J]. Energy conversion and management,2019, 199: 111945.
[22] WANG A L, HU S, LIN B Q. Emission abatement cost in China with consideration of technological heterogeneity[J]. Applied energy, 2021, 290: 116748.1-116748.14.

基金

国家自然科学基金(22109022)

PDF(2842 KB)

Accesses

Citation

Detail

段落导航
相关文章

/