长期循环荷载作用时单桩式海上风力机结构自振频率的影响规律研究

孙毅龙, 许成顺, 翟恩地, 杜修力, 杨钰荣

太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 194-199.

PDF(1295 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1295 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (12) : 194-199. DOI: 10.19912/j.0254-0096.tynxb.2022-0379

长期循环荷载作用时单桩式海上风力机结构自振频率的影响规律研究

  • 孙毅龙1, 许成顺1, 翟恩地1,2, 杜修力1, 杨钰荣1
作者信息 +

INFLUENCE STUDY OF NATURAL FREQUENCY OF MONOPILE SUPPORTED OFFSHORE WIND TURBINE STRUCTURE UNDER LONG-TERM CYCLIC LOADS

  • Sun Yilong1, Xu Chengshun1, Zhai Endi1,2, Du Xiuli1, Yang Yurong1
Author information +
文章历史 +

摘要

基于FLAC3D有限差分计算平台,建立风力机结构自振频率数值计算模型,并与工程监测的自振频率数据进行对比验证模型的有效性;然后通过嵌入土体刚度衰减模型(DSM),考虑长期循环荷载对地基刚度的影响;探讨不同大小的循环荷载、不同的循环加载次数对海上风力机结构体系自振频率的影响规律,提出自振频率衰减公式;最后结合既有的风力机结构体系自振频率简化计算方法,建立单桩式海上风力机长期自振频率简化评价方法。结果表明,循环荷载的增大、加载次数的增加会导致海上风力机结构体系自振频率较小;风力机结构体系的设计自振频率应偏移3P,以保证海上风力机的长期运营安全。

Abstract

A numerical calculation model is established to obtain the natural frequency of wind turbine structures by employing FLAC3D software. This model is verified by comparing with the engineering monitored data. The degradation stiffness model (DSM) is embedded into the numerical model to consider the effect of long-term cyclic loads on foundation stiffness. Influences of different amplitude and number of cyclic loads on the natural frequency of the offshore wind turbine structure is explored by using this developed numerical model. Finally, the natural frequency attenuation formula is put forward, and an evaluation method is proposed to evaluate the effect of the long-term cyclic loads on the natural frequency. The results show that the natural frequency of the offshore wind turbine structure decreases with increasing the amplitude and number of cyclic loads. The natural frequency design of the wind turbine structure should be offset towards 3P to ensure the long-term operational safety of the offshore wind turbine.

关键词

海上风力机 / 循环荷载 / 自振频率 / 砂土 / 刚度衰减模型

Key words

offshore wind turbines / cyclic loads / natural frequencies / sand / degradation stiffness model

引用本文

导出引用
孙毅龙, 许成顺, 翟恩地, 杜修力, 杨钰荣. 长期循环荷载作用时单桩式海上风力机结构自振频率的影响规律研究[J]. 太阳能学报. 2022, 43(12): 194-199 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0379
Sun Yilong, Xu Chengshun, Zhai Endi, Du Xiuli, Yang Yurong. INFLUENCE STUDY OF NATURAL FREQUENCY OF MONOPILE SUPPORTED OFFSHORE WIND TURBINE STRUCTURE UNDER LONG-TERM CYCLIC LOADS[J]. Acta Energiae Solaris Sinica. 2022, 43(12): 194-199 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0379
中图分类号: TU47   

参考文献

[1] DET NORSKE VERITAS.DNV-OS-J101, Design of offshore wind turbine structures[S]. Norway: DNV Press, 2014.
[2] ZAAIJER M B.Foundation modelling to assess dynamic behaviour of offshore wind turbine[J]. Applied ocean research, 2006, 28(1): 45-57.
[3] BYRNE B.Foundation design for offshore wind turbine[R]. Géotechnique Lecture. London: University of Oxford, 2011.
[4] BHATTACHARYA S, ADHIKARI S.Experimental validation of soil-structure interaction of offshore wind turbin[J]. Soil dynamics and earthquake engineering, 2011, 31(5-6): 805-816.
[5] ARANY L, BHATTACHARYA S, MACDONALD J, et al.Closed form solution of eigen frequency of monopile supported offshore wind turbine in deeper waters incorporating stiffness of substructure and SSI[J]. Soil dynamics and earthquake engineering, 2016, 83: 18-32.
[6] ANDERSEN L V, VAHDATIRAD M J, SICHANI M T, et al.Natural frequencies of wind turbine on monopile foundations in clayey soils—a probabilistic approach[J]. Computers and geotechnics, 2012, 43: 1-11.
[7] DARVISHI-ALAMOUTI S, BAHAARI M, MORADI M.Natural frequency of offshore wind turbines on rigid and flexible monopiles in cohesionless soils with linear stiffness distribution[J]. Applied ocean research, 2017, 68: 91-102.
[8] SCHAUMANN P, LOCHTE-HOLTGREVEN S, STEPPELER S.Special fatigue aspects in support structures of offshore wind turbines[J]. Materialwissenschaft und werkstofftechnik, 2011, 42(12): 1075-1081.
[9] ACHMUS M, KUO Y S, ABDEL-RAHMAN K.Behavior of monopile foundations under cyclic lateral load[J]. Computers and geotechnics, 2009, 36(5): 725-735.
[10] CHONG S H.Numerical simulation of offshore foundations subjected to repetitive loads[J]. Ocean engineering, 2017, 142: 470-477.
[11] CHONG S H, PASTEN C.Numerical study on long-term monopile foundation response[J]. Marine georesources & geotechnology, 2018, 36(2): 190-196.
[12] CUÉLLAR P, MIRA P, PASTOR M, et al. A numerical model for the transient analysis of offshore foundations under cyclic loading[J]. Computers and geotechnics, 2014, 59: 75-86.
[13] CUÉLLAR P. Pile foundations for offshore wind turbines: numerical and experimental investigations on the behaviour under short-term and long-term cyclic loading[D]. Von der Fakultt VI-Planen Bauen Umwelt der Technischen,Universitt Berlin, 2011.
[14] LI J L, GUAN D W, CHIEW Y M, et al.Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading[J]. Ocean engineering, 2020, 217: 107893.
[15] LOMBARDI D S.BHATTACHARYA, MUIR WOOD D. Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil[J]. Soil dynamics and earthquake engineering, 2013, 49: 165-180.
[16] BHATTACHARYA S, COX J A, D LOMBARDI, et al. Dynamics of offshore wind turbines supported on two foundations[J]. ICE proceedings geotechnical engineering, 2013, 166(2): 159-169.
[17] SHIRZADEH R, WEIJTJENS W, GUILLAUME P, et al.The dynamics of an offshore wind turbine in parked conditions: a comparison between simulations and measurements[J]. Wind energy, 2015, 18(10): 1685-1702.
[18] DUNCAN J, CHANG C.Nonlinear analysis of stress and strain in soils[J]. Journal of the soil mechanics and foundations division, 1970, 96(5): 1629-1653.
[19] HUURMAN M.Development of traffic induced permanent strain in concrete block pavements[J]. Heron, 1996, 41(1): 29-52.
[20] 郭玉樹, 亚克慕斯·马丁, 阿布达雷赫曼·哈里. 用循环三轴试验分析海上风力发电机单桩基础侧向位移[J]. 岩土工程学报, 2009, 31(11): 1729-1734.
KUO Y S, ACHMUS M, ABDEL-RAHMAN K.Estimation of lateral deformation of monopile foundations by use of cyclic triaxial tests[J]. Chinese journal of geotechnical engineering, 2009, 31(11): 1729-1734.
[21] AHMED S S, HAWLADER B.Numerical analysis of large-diameter monopiles in dense sand supporting offshore wind turbines[J]. International journal of geomechanics, 2016, 16(5): 04016018.
[22] BARARI A, BAGHERI M, ROUAINIA M, et al.Deformation mechanisms for offshore monopile foundations accounting for cyclic mobility effects[J]. Soil dynamics and earthquake engineering, 2017, 97: 439-453.
[23] WARD I P.Natural frequency analysis of offshore wind turbines monopiles[J]. Proceedings of the Institution of Civil Engineers, 2016, 169(4): 196-208.
[24] VUGHT J H.Considerations on the dynamics of support structures for an offshore wind energy converter[D]. Delft, the Netherlands: Delft University of Technology, 2000.

基金

国家自然科学基金优秀青年基金(51722801)

PDF(1295 KB)

Accesses

Citation

Detail

段落导航
相关文章

/