结合中国西北地区风沙活动频繁的特点,以1.5 MW叶片的缩比模型作为试验用风力机叶片,设计风沙流冲蚀磨损装置,对叶片压力面沿弦向和展向分区域冲蚀。将加装冲蚀后叶片的风电机组进行车载试验,研究叶片分区域非均匀磨蚀特征对气动性能的影响。结果表明:前缘磨蚀叶片在小安装角下总体导致风电机组输出功率减小,气动性能下降,风能利用系数在31.7°安装角下降更明显;展向半冲蚀叶片小安装角时使风力机输出功率和风能利用系数均下降,而安装角增大后出现气动性能提高的积极效应;展向全冲蚀叶片小安装角时体现出积极效应,安装角增大后引起气动性能劣化。
Abstract
According to the characteristics of the northwest China sandstorm activities, the scaling model blades of 1.5 MW wind turbine were tested, the device that used to erode by wind-sand flow was designed, and the pressure side of blades were eroded along chordwise and spanwise areas respectively. The vehicle test was used to test the eroded wind turbine blades, and the influence of non-uniform erosion features on aerodynamic characteristics was studied in different regions of blades. Results show that output power of wind turbine and aerodynamic performance decrease under small installation angle on the leading edge erosion blades, and the wind-power utilization coefficient(CP) decreases more obviously when the installation angle is 31.7°. Output power and CP all decrease under small installation angle on the half erosion blades of spanwise areas, while the installation angle increases, the aerodynamic performance improves. The positive effect is found under small installation angle on total erosion blades of spanwise areas, while the installation angle increases, aerodynamic performance deteriorates.
关键词
风力机 /
叶片 /
磨蚀 /
气动性能 /
表面粗糙度
Key words
wind turbines /
blades /
erosion /
aerodynamic characteristic /
surface roughness
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] KEEGAN M H, NASH D H, STACK M M.On erosion issues associated with the leading edge of wind turbine blades[J]. Journal of physics D: applied physics, 2013, 46(38): 3727-3748.
[2] DALILI N, EDRISY A, CARRIVEAU R.A review of surface engineering issues critical to wind turbine performance[J]. Renewable and sustainable energy reviews,2009, 13(2): 428-438.
[3] CORTEN G P, VELDKAMP H F.Aerodynamics: insects can halve wind-turbine power[J]. Nature, 2001, 412(6842): 41-42.
[4] BATTISTI L.Wind turbines in cold climates[M]. New York: Springer-Verlag, 2015.
[5] 梁健, 胡琴, 胡晓东, 等. 小型风力机覆冰环境输出功率及气动特性研究[J]. 工程热物理学报, 2019, 40(10): 2277-2283.
LIANG J, HU Q, HU X D, et al.Study on the output power and aerodynamic characteristics of iced small wind turbine[J]. Journal of engineering thermophysics, 2019, 40(10): 2277-2283.
[6] HOMOLA M C, VIRK M S, NICKLASSON P J, et al.Performance losses due to ice accretion for a 5 MW wind turbine[J]. Wind energy, 2012, 15(3): 379-389.
[7] 舒立春, 李瀚涛, 胡琴, 等. 自然环境叶片覆冰程度对风力机功率损失的影响[J]. 中国电机工程学报, 2018, 38(18): 5599-5605.
SHU L C, LI H T, HU Q, et al.Effects of ice degree of blades on power losses of wind turbines at natural environments[J]. Proceedings of the CSEE, 2018, 38(18): 5599-5605.
[8] ROOIJ R V, TIMMER W A.Roughness sensitivity considerations for thick rotor blade airfoils[J]. Journal of solar energy engineering, 2003, 125(4): 468-478.
[9] 王燕, 胡锐锋, 王萍. 基于磨损模型的S809翼型气动性能及流场特性研究[J]. 太阳能学报, 2017, 28(3): 607-615.
WANG Y, HU R F, WANG P.Research on the aerodynamic and flow field characteristics of S809 airfoil based on the leading edge erosion modeling[J]. Acta energiae solaris sinica, 2017, 28(3): 607-615.
[10] 李德顺, 王成泽, 李银然, 等. 叶片前缘磨损形貌特征对风力机翼型气动性能的影响[J]. 农业工程学报, 2017, 33(22): 269-275.
LI D S, WANG C Z, LI Y R, et al.Influence of blade leading edge erosion features on aerodynamic characteristics of wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 269-275.
[11] 李德顺, 李仁年, 杨从新, 等. 粗糙度对风力机翼型气动性能影响的数值预测[J]. 农业机械学报, 2011, 42(5): 111-115.
LI D S, LI R N, YANG C X, et al.Numerical prediction of the effect of surface roughness on aerodynamic performance of a wind turbine airfoil[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(5): 111-115.
[12] SAREEN A, SAPRE C A, SELIG M S.Effects of leading edge erosion on wind turbine blade performance[J]. Wind energy, 2015, 17(10): 1531-1542.
[13] 包能胜, 霍福鹏, 叶枝全, 等. 表面粗糙度对风力机翼型性能的影响[J]. 太阳能学报, 2005, 26(4): 458-462.
BAO N S, HUO F P, YE Z Q, et al.Aerodynamic performance influence with roughness on wind turbine airfoil surface[J]. Acta energiae solaris sinica, 2005, 26(4): 458-462.
[14] 张骏, 袁奇, 吴聪, 等. 大型风力机叶片表面粗糙度效应数值研究[J]. 中国电机工程学报, 2014, 34(20): 3384-3391.
ZHANG J, YUAN Q, WU C, et al.Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 34(20): 3384-3391.
[15] 吴聪, 袁奇, 钟贤和. 风力机叶片表面粗糙度效应的三维数值研究[J]. 太阳能学报, 2014, 35(5): 848-854.
WU C, YUAN Q, ZHONG X H.3D numerical simulation on the effect of surface roughness on wind turbine blades[J]. Acta energiae solaris sinica, 2014, 35(5): 848-854.
[16] 李明, 陈松利, 韩巧丽, 等. 叶片材料特性对风电机组叶轮输出功率的影响[J]. 机械设计与制造, 2019(2): 253-256, 260.
LI M, CHEN S L, HAN Q L, et al.Experimental study on the influence of different blade material on output power of wind turbine rotor[J]. Machinery design & manufacture, 2019(2): 253-256,260.
[17] 王健, 杜国正, 张永, 等. 运行状态下风力机叶片涂层沙蚀磨损研究[J]. 材料导报, 2021, 35(4): 177-180.
WANG J, DU G Z, ZHANG Y, et al.Research on sand erosion wear of wind turbine blade coating in operation state[J]. Materials reports, 2021, 35(4): 177-180.
[18] 孙云峰, 韩巧丽, 徐宝清, 等. 风电机组风洞测试的阻塞效应分析[J]. 科学技术与工程, 2019, 19(5):150-153.
SUN Y F, HAN Q L, XU B Q, et al.Analysis of clogging effect in wind tunnel test of wind turbine[J]. Science technology and engineering, 2019, 19(5): 150-153.
[19] SAGOL E, REGGIO M, ILINCA A.Issues concerning roughness on wind turbine blades[J]. Renewable and sustainable energy reviews, 2013, 23(4): 514-525.
基金
国家自然科学基金(51766017); 内蒙古自然科学基金面上项目(2019MS05035)