MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用

韩胜男, 常萱, 陈静伟, 李晓莉, 许颖

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 122-128.

PDF(2509 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2509 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 122-128. DOI: 10.19912/j.0254-0096.tynxb.2022-0403

MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用

  • 韩胜男, 常萱, 陈静伟, 李晓莉, 许颖
作者信息 +

FABRICATION OF MoNx THIN FILMS AND ITS APPLICATIONS IN FLEXIBLE STAINLESS STEEL CIGS SOLAR CELLS

  • Han Shengnan, Chang Xuan, Chen Jingwei, Li Xiaoli, Xu Ying
Author information +
文章历史 +

摘要

采用反应磁控溅射法制备MoNx薄膜,研究N2流量对MoNx薄膜的结构、形貌、元素组分和光电学特性的影响。通过XRD、SEM、紫外-可见分光光度计等测试,结果表明:当增大N2流量时,薄膜晶相由Mo相向Mo2N相逐渐发生改变,且薄膜的反射率也发生变化,而后利用MoNx薄膜作为抑制Fe等杂质向CIGS薄膜扩散的阻挡层;XRD、SEM结果表明,MoNx薄膜的引入不会影响Mo薄膜、CIGS薄膜晶体结构和形貌;此外,二次离子质谱(SIMS)表明,MoNx阻挡层显著降低了CIGS薄膜中Fe的浓度,最终,将柔性CIGS太阳电池的光电转换效率由10%提升至12.5%。

Abstract

MoNx thin films are prepared by reactive magnetron sputtering. The effects of N2 flow on the structure, morphology, elemental composition and photoelectric properties of MoNx thin films are investigated. The results show that with the flow rate of N2 increased, the crystal phase of the films gradually changes from Mo phase to Mo2N phase. The reflectivity of the films also increases with the increases of N2 flow. XPS analysis showed that the oxidation states ratio of Moδ+ is increases with the increases of N2 flow. MoNx is deposited on stainless steel as a diffusion barrier layer for CIGS solar cells. SIMS measurement revealed that Fe diffusion is suppressed with the MoNx barrier layer. Finally, the efficiency of the flexible CIGS solar cell is increased from 10% to 12.5%.

关键词

太阳电池 / CIGS / 阻挡层 / MoNx薄膜

Key words

solar cells / CIGS / barrier layer / MoNx thin films

引用本文

导出引用
韩胜男, 常萱, 陈静伟, 李晓莉, 许颖. MoNx薄膜制备及其在柔性不锈钢CIGS太阳电池中的应用[J]. 太阳能学报. 2023, 44(7): 122-128 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0403
Han Shengnan, Chang Xuan, Chen Jingwei, Li Xiaoli, Xu Ying. FABRICATION OF MoNx THIN FILMS AND ITS APPLICATIONS IN FLEXIBLE STAINLESS STEEL CIGS SOLAR CELLS[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 122-128 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0403
中图分类号: TM615   

参考文献

[1] 高兵, 沈辉. CIGS/Si异质结太阳电池的数值模拟[J]. 太阳能学报, 2018, 39(5): 1284-1290.
GAO B, SHEN H.Numerical simulation of CIGS/Si heterojunction solar cells[J]. Acta energiae solaris sinica, 2018, 39(5):1284-1290.
[2] NAKAMURA M, YAMAGUCHI K, KIMOTO Y, et al.Cd-free Cu(In,Ga)Se2 thin-film solar cell with record efficiency of 23.35%[J]. IEEE journal of photovoltaics, 2019, 9(6): 1863-1867.
[3] TUTTLE J R, SZALAJ A, KEANE J.A 15.2% AMO/1433 W/kg thin-film Cu(In,Ga)Se2 solar cell for space applications[C]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000(Cat. No.00 CH37036), Anchorage, AK, USA, 2000.
[4] ZHANG R, HOLLARS D R, KANICKI J.High efficiency Cu(In,Ga)Se2 flexible solar cells fabricated by roll-to-roll metallic precursor co-sputtering method[J]. Japanese journal of applied physics, 2013, 52(9): 092302.
[5] CHIRIL A, REINHARD P, PIANEZZI F, et al.Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells[J]. Nature materials, 2013, 12(12): 1107-1111.
[6] BALESTRIERI M, ACHARD V, HILDEBRANDT T, et al.Structural characterization of coevaporated Cu(In,Ga)Se2 absorbers deposited at low temperature[J]. Journal of alloys and compounds, 2019, 794: 654-661.
[7] JACKSON P, GRABITZ P, STROHM A, et al.Contamination of Cu(In,Ga)Se2 solar cells by metallic substrate elements[C]//19th European Photovoltaic Solar Energy Conference, Paris, France, 2004: 1936-1938.
[8] LI B Y, ZHANG Y, WANG B, et al.The role of growth temperature and Se flux on Cu(In,Ga)Se2 thin film deposited on a stainless steel substrate and solar cell[J]. Semiconductor science and technology, 2012, 27(6): 065007.
[9] HERZ K, EICKE A, KESSLER F, et al.Diffusion barriers for CIGS solar cells on metallic substrates[J]. Thin solid films, 2003, 431(5): 392-397.
[10] WUERZ R, EICKE A, FRANKENFELD M, et al.CIGS thin-film solar cells on steel substrates[J]. Thin solid films, 2009, 517(7): 2415-2418.
[11] 商慧荣, 沈鸿烈, 孙孪鸿, 等. 不同扩散阻挡层对柔性钛衬底CZTSSe薄膜与电池性能的影响[J]. 太阳能学报, 2020, 41(6): 242-246.
SHANG H R, SHEN H L, SUN L H, et al.Effects of different diffusion barriers on the performance of CZTSSe thin films and cells on flexible titanium substrates[J]. Acta energiae solaris sinica, 2020, 41(6): 242-246.
[12] KIM K B, KIM M, BAEK J, et al.Influence of Cr thin films on the properties of flexible CIGS solar cells on steel substrates[J]. Electronic materials letters, 2014, 10(1): 247-251.
[13] PARK H, KIM S C, BAE H C, et al.ALD-Grown Al2O3 as a diffusion barrier for stainless steel substrates for flexible Cu(InGa)Se2 solar cells[J]. Molecular crystals and liquid crystals, 2011, 551(1): 147-153.
[14] TSENG C W, LI T T, LIN W T, et al.Effects of SiOx barrier layers deposited by spray technique for CIGS solar cells on metallic substrates[J]. ECS transactions, 2014, 60(1): 1287-1294.
[15] KHELIFI S, BELGHACHI A, LAUWAERT J, et al.Characterization of flexible thin film CIGSe solar cells grown on different metallic foil substrates[J]. Energy procedia, 2010, 2(1): 109-117.
[16] SHI C Y, SUN Y, HE Q, et al.Cu(In, Ga)Se2 solar cells on stainless-steel substrates covered with ZnO diffusion barriers[J]. Solar energy materials and solar cells, 2009, 93(5): 654-656.
[17] ZHAO B, SUN K, SONG Z, et al.Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization[J]. Applied surface science, 2010, 256(20): 6003-6006.
[18] JANG Y J, KIM J B, HONG T E, et al.Highly-conformal nanocrystalline molybdenum nitride thin films by atomic layer deposition as a diffusion barrier against Cu[J]. Journal of alloys and compounds, 2016, 663: 651-658.
[19] WANG T, ZHANG G J, REN S, et al.Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering[J]. Journal of alloys and compounds, 2017, 701: 1-8.
[20] XIE Y B, FANG T.Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor[J]. Materials science and engineering B, 2017, 215: 64-70.
[21] 刘沅东, 卓胜, 汤清琼, 等. 使用CIGS四元靶材制备高效率电池研究[J]. 太阳能学报, 2018, 39(2): 567-571.
LIU Y D, ZHUO S, TANG Q Q, et al.Preparation of high efficiency cells using CIGS quaternary targets[J]. Acta energiae solaris sinica, 2018, 39(2): 567-571
[22] KIM G T, PARK T K, CHUNG H, et al.Growth and characterization of chloronitroaniline crystals for optical parametric oscillators i. xps study of mo-based compounds[J]. Applied surface science, 1999, 152(1-2): 35-43.
[23] LI Y J, LI Y X, ZHANG G H, et al.Stable molybdenum nitride contact for efficient silicon solar cells[J]. Physica status solidi (RRL)-rapid research letters, 2021, 15(12): 2100159.
[24] SUBBURAJ T, CHIU G L, SOM S, et al.Influence of doping iron ions into Cu(In,Ga)Se2 films in the morphology and photovoltaic properties of thin-film solar cells[J]. Journal of ceramic processing research, 2017, 18(10): 754-759.
[25] HARTMANN M, SCHMIDT M, JASENEK A, et al.Flexible and light weight substrates for Cu(In, Ga)Se2 solar cells and modules[C]//Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference-2000(Cat. No.00CH37036), Anchorage, AK, USA, 2000.
[26] AWK B, AIL R, AJ S, et al.Impact of substrate roughness on CuInxGa1-xSe2 device properties[J]. Solar energy materials & solar cells, 2004, 83(1): 67-80.
[27] LI B Y, ZHANG Y, WANG H, et al.Preferred orientation of Cu(In,Ga)Se2 thin film deposited on stainless steel substrate[J]. Progress in photovoltaics: research and applications, 2013, 21(5): 838-848.
[28] BLÖSCH P, PIANEZZI F, CHIRILĂ A, et al. Diffusion barrier properties of molybdenum back contacts for Cu(In,Ga)Se2 solar cells on stainless steel foils[J]. Journal of applied physics, 2013, 113(5): 054506.

基金

国家重点研发计划(2018YFB1500201); 河北省重点研发计划(20314305D)

PDF(2509 KB)

Accesses

Citation

Detail

段落导航
相关文章

/