锂电池储能电站防消一体化系统设计及控制策略

徐亮

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 478-483.

PDF(1944 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1944 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 478-483. DOI: 10.19912/j.0254-0096.tynxb.2022-0411

锂电池储能电站防消一体化系统设计及控制策略

  • 徐亮1,2
作者信息 +

DESIGN AND CONTROL STRATEGY OF INTEGRATED SYSTEM OF EARLY WARMING AND FIRE PROTECTION FOR LITHIUM-ION BATTERIES ENERGY STORAGE POWER STATION

  • Xu Liang1,2
Author information +
文章历史 +

摘要

面向锂电池储能电站的安全需求,遵循“预防为主、防消结合”的原则,设计锂电池储能电站防消一体化系统,实现数据融合和智能诊断,建立早期预警、后期灭火防护的完整系统;参照实际储能预制舱结构,搭建储能预制舱试验环境,开展锂电池单体及模组热失控及灭火试验,结果表明:防消一体化系统控制策略通过安全预警、防护、消防系统的分级工作,实现了火灾早期预警以及后期灭火防护,最大程度降低了电池热失控带来的危害;以细水雾作为灭火介质能在短时间内熄灭磷酸铁锂电池火灾,并能有效防止电池复燃。

Abstract

In order to meet the safety requirements of lithium-ion batteries energy storage power station, the integrated system of early warning and fire prevention was designed according to the principle of“prevention first, prevention and elimination combined”. The integrated system realized data fusion and intelligent diagnosis, and established a complete system of early warning and late fire prevention. Take the prefabricated compartment structure of actual energy storage power station as reference, the prefabricated compartment test platform was set up to conduct thermal runaway and fire extinguishing tests of lithium-ion batteries and modules. The results showed that control strategy of the integrated system implement early warning and later fire protection of the fire through the hierarchical working steps of safety warning, protection and fire fighting in order to minimize the damage caused by the thermal runaway. In addition, using water mist as the extinguishing medium can extinguish the fire of lithium iron phosphate batteries in a short time and effectively prevent the batteries from reburning.

关键词

锂离子电池 / 储能 / 消防 / 热失控 / 防消一体化 / 控制策略

Key words

lithium-ion batteries / energy storage / fire prevention / thermal runaway / integration of early warming and fire protection / control strategy

引用本文

导出引用
徐亮. 锂电池储能电站防消一体化系统设计及控制策略[J]. 太阳能学报. 2022, 43(5): 478-483 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0411
Xu Liang. DESIGN AND CONTROL STRATEGY OF INTEGRATED SYSTEM OF EARLY WARMING AND FIRE PROTECTION FOR LITHIUM-ION BATTERIES ENERGY STORAGE POWER STATION[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 478-483 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0411
中图分类号: TM912   

参考文献

[1] 谭显东, 刘俊, 徐志成, 等. “双碳”目标下“十四五”电力供需形势[J]. 中国电力, 2021, 54(5): 1-6.
TAN X D, LIU J, XU Z C, et al.Power supply and demand balance during the 14th Five-Year Plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric power, 2021, 54(5): 1-6.
[2] 李建林, 武亦文, 王楠, 等. 吉瓦级电化学储能电站研究综述及展望[J]. 电力系统自动化, 2021, 45(19): 2-14.
LI J L, WU Y W, WANG N, et al.Review and prospect of gigawatt-level electrochemical energy storage power station[J]. Automation of electric power systems, 2021, 45(19): 2-14.
[3] 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述[J]. 电力建设, 2020, 41(6): 77-84.
LI J L, LI Y X, ZHOU X C.Summary of research on grid-side energy storage technology[J]. Electric power construction, 2020, 41(6): 77-84.
[4] 黄强, 郭怿, 江建华, 等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.
HUANG Q, GUO Y, JIANG J H, et al.Development pathway of China’s clean electricity under carbon peaking and carbon neutrality goals[J]. Journal of Shanghai Jiaotong University, 2021, 55(12): 1499-1509.
[5] 王磊, 魏敏. 新型电力系统场景下抽水蓄能的应用探讨[J].水电与抽水蓄能, 2021, 7(6): 15-16, 23.
WANG L, WEI M.Discussion on application of pumped storage in new power system[J]. Hydropower and pumped storage, 2021, 7(6): 15-16, 23.
[6] KIM T, SONG W, SON D Y, et al.Lithium-ion batteries: Outlook on present, future, and hybridized technologies[J]. Journal of materials chemistry A, 2019, 7(7): 2942-2964.
[7] 赵春朋, 王青松, 余彦. 密闭空间中锂离子电池的热爆炸危险性[J]. 储能科学与技术, 2018, 7(3): 424-430.
ZHAO C P, WANG Q S, YU Y.Thermal explosion hazards of lithium-ion batteries in hermetic space[J]. Energy storage science and technology, 2018, 7(3): 424-430.
[8] 李首顶, 李艳, 田杰, 等. 锂离子电池电力储能系统消防安全现状分析[J]. 储能科学与技术, 2020, 9(5): 1505-1516.
LI S D, LI Y, TIAN J, et al.Current status and emerging trends in the safety of Li-ion battery energy storage for power grid applications[J]. Energy storage science and technology, 2020, 9(5):1505-1516.
[9] ZALOSH R, GANDHI P, BAROWY A.Lithium-ion energy storage battery explosion incidents[J]. Journal of loss prevention in the process industries, 2021, 72(3) :104560.
[10] 王莉, 谢乐琼, 田光宇, 等.锂离子电池安全事故: 安全性问题, 还是可靠性问题[J]. 储能科学与技术, 2021, 10(1): 1-6.
WANG L, XIE L Q, TIAN G Y, et al.Safety accidents of Li-ion batteries: reliability issues or safety issues[J]. Energy storage science and technology, 2021, 10(1): 1-6.
[11] AUSTIN R B, ERIK J A, KEVIN C M, et al.Explosion hazards from lithium-ion battery vent gas[J]. Journal of power sources, 2020, 446:227257.
[12] ZHANG Q S, NIU J H, ZHAO Z H, et al.Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of energy storage, 2022, 45:103759.
[13] 张青松, 刘添添, 白伟. 加热方式对锂离子电池热失控行为影响[J]. 中国安全科学学报, 2021, 31(9): 44-51.
ZHANG Q S, LIU T T, BAI W.Effect of heating mode on thermal runaway behavior of lithium ion battery[J].China safety science journal, 2021, 31(9): 44-51.
[14] 张明杰, 张坚, 杨凯, 等. 磷酸铁锂电池热失控过程中释放能量分析[J]. 电源技术, 2020, 44(11): 1583-1586, 1621.
ZHANG M J, ZHANG J, YANG K, et al.Energy released during thermal runaway of lithium iron phosphate battery[J]. Chinese journal of power sources, 2020, 44(11): 1583-1586, 1621.
[15] 平平. 锂离子电池热失控与火灾危险性分析及高安全性电池体系研究[D]. 合肥: 中国科学技术大学, 2014.
PING P.Lithium ion battery thermal runaway and fire risk analysis and the development on the safer battery system[D]. Hefei: University of Science and Technology of China, 2014.
[16] 李建林, 武亦文, 王楠, 等. 吉瓦级电化学储能电站信息架构与安防体系综述[J]. 电力系统自动化, 2021, 45(23): 179-191.
LI J L, WU Y W, WANG N, et al.Review of Information architecture and security system of gigawatt electrochemical energy storage power station[J]. Automation of electric power systems, 2021, 45(23): 179-191.
[17] 刘同宇, 李师, 付卫东, 等. 大容量磷酸铁锂动力电池热失控预警策略研究[J]. 中国安全科学学报, 2021, 31(11): 120-126.
LIU T Y, LI S, FU W D, et al.Study on early warning strategy of large LFP traction battery’s thermal runaway[J]. China safety science journal, 2021, 31(11): 120-126.
[18] 王春力, 贡丽妙, 亢平, 等. 锂离子电池储能电站早期预警系统研究[J]. 储能科学与技术, 2018, 7(6): 1152-1158.
WANG C L, GONG L M, KANG P, et al.Research on early warning system of lithium ion battery energy storage power station[J]. Energy storage science and technology, 2018, 7(6): 1152-1158.
[19] 吴静云, 黄峥, 郭鹏宇. 储能用磷酸铁锂(LFP)电池消防技术研究进展[J]. 储能科学与技术, 2019, 8(3): 495-499.
WU J Y, HUANG Z, GUO P Y.Research progress on fire protection technology of lithium iron phosphate (LFP) battery for energy storage[J]. Energy storage science and technology, 2019, 8(3): 495-499.
[20] WANG Q S, MAO B B, STOLIAROV S I, et al.A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in energy and combustion science, 2019, 73: 95-131.
[21] 黄沛丰, 刘家亮, 金翼, 等. 基于火三角模型的锂离子电池火灾事故树分析[J]. 安全与环境学报, 2018, 18(1): 66-69.
HUANG P F, LIU J L, JIN Y, et al.Fault tree analysis method for lithium ion battery failure mode based on the fire triangle model[J]. Journal of safety and environment, 2018, 18(1): 66-69.
[22] FENG X, HE X, OUYANG M, et al.A coupled electrochemical-thermal failure model for predicting the thermal runaway behavior of lithium-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3748-A3765.

基金

国网电力科学研究院科技项目(SGNR0000KJJS1907652)

PDF(1944 KB)

Accesses

Citation

Detail

段落导航
相关文章

/