通过火烧试验、水压爆破试验和热分析等手段,研究典型火烧工况下储氢装置的热响应行为、损伤形态及碳纤维复合材料微细观损伤特征。结果表明,在规定火烧条件下储氢装置平均失效压力为41.5 MPa,比常温环境下(35 MPa-166 L水爆压力125.5 MPa)降低约67%;环氧树脂热分解发生在100~600 ℃,并表现出4个明显的阶段性反应特征;碳纤维热分解主要发生在600~950 ℃,在849 ℃时失重速率最快为0.87%/℃;火灾场景下高压储氢装置可能出现火烧损伤、爆炸损伤和热辐射损伤3种典型热损伤模式,其中爆炸场景下碳纤维残余物丝体呈多处层状脆性破碎,具有明显的力学损伤特征。
Abstract
In this paper, the thermal response behaviors, damage morphology, and microscopic damage characteristics of type Ⅲ hydrogen tanks were studied under typical fire conditions. These properties were investigated by methods of bonfire test, hydraulic burst test, and thermal analysis. Results show that the hydraulic burst pressure of type Ⅲ tank (35 MPa-166 L) is 125.5 MPa. However, the average failure pressure of the tanks under the prescribed fire conditions is 41.5 MPa, which is reduced by about 3 times in the fire environment. The decomposition of epoxy resin occurs in temperature range of 100 to 600 °C, which exhibits four obvious phases of reaction. The decomposition of carbon fiber mainly occurs in temperature range of 600 to 950 ℃, in which the fastest weight loss rate is 0.87%/℃ at 849 ℃. In addition, three typical thermal damage modes of the high-pressure hydrogen tanks at fire scenarios are discussed, such as fire damage, explosion damage, and thermal radiation damage. The carbon fiber remnant filament at explosion scene showsbrittle broken in layers with obvious mechanical damage characteristics.
关键词
燃料电池 /
高压储氢 /
碳纤维 /
爆炸 /
火灾场景
Key words
fuel cell /
high-pressure hydrogen storage /
carbon fiber /
explosion /
fire scenarios
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 秦玉琪, 袁奕雯, 杨振国. 纤维缠绕储氢气瓶及燃料汽车应用现状综述[J]. 中国特种设备安全, 2019, 35(2): 70-75.
QIN Y Q, YUAN Y W, YANG Z G.Applications of the filament winding hydrogen storage tanks and hydrogen fuel-cell vehicles: a review[J]. China special equipment safety, 2019, 35(2): 70-75.
[2] KHAN U, YAMAMOTO T, SATO H.Understanding attitudes of hydrogen fuel-cell vehicle adopters in Japan[J]. International journal of hydrogen energy, 2021, 46: 30698-30717.
[3] White paper on China’s hydrogen energy and fuel cell industry[R]. China Hydrogen Alliance.
[4] 郑津洋, 胡军, 韩武林, 等. 中国氢能承压设备风险分析和对策的几点思考[J]. 压力容器, 2020, 37(6): 39-47.
ZHENG J Y, HU J, HAN W L, et al.Risk analysis and some countermeasures of pressure equipment for hydrogen energy in China[J]. Pressure vessel, 2020, 37(6): 39-47.
[5] 文刚, 李文斌, 林松, 等. 碳纤维缠绕复合材料储氢气瓶的研制与应用进展[J]. 玻璃钢/复合材料, 2015(12): 99-105.
WEN G, LI W B, LIN S, et al.Research and application progress of carbon fiber composite hydrogen storage cylinder[J]. FRP/CM, 2015(12): 99-105.
[6] FOORGINEZHAD S, MOHSENI-DARGAH M, FALAHATI Z, et al.Sensing advancement towards safety assessment of hydrogen fuel cell vehicles[J]. Journal of power sources, 2021, 489: 229450.
[7] PERRETTE L, WIEDEMANN H K. CNG buses fire safety: learnings from recent accidents in France and Germany[C]//Society of Automative Engineer World Congress2007, Apr 2007, Detroit, United States. pp.NC. ineris-00976180.
[8] ZALOSH R, WELLESLEY F.Blast waves and fireballs generated by hydrogen fuel tank rupture during fire exposure[R]. Edinburgh: Proceedings of the 5th International Seminar on Fire and Explosion Hazards, 2007.
[9] SHEN C C, MA L, HUANG G, et al.Consequence assessment of high-pressure hydrogen storage tank rupture during fire test[J]. Journal of loss prevention in the process industries, 2018, 55: 223-231.
[10] The hydrogen is popular! Three explosions in 20 days, how safe is hydrogen energy? Sohu; 2019[EB/OL]. https://www.sohu.com/a/320575260_120165743[2022-03-31].
[11] WEBER R.Short-pulse laser processing of CFRP[J]. Physics procedia, 2012, 39: 137-146.
[12] KALYANASUNDARAM D, GURURAJA S, PRABHUNE P, et al.Open hole fatigue testing of laser machined MD-CFRPs[J]. Composites part A, 2018, 111: 33-41.
[13] 田勇. 碳纤维复合材料钻孔缺陷研究与刀具优化设计[D]. 哈尔滨: 哈尔滨理工大学, 2015.
TIAN Y.Research on drill hole defect and optimization of tool design of carbon fiber reinforced polymer composites[D]. Harbin: Harbin Institute of Technology, 2015.
[14] 张彬, 陈晓宁, 黄立洋, 等. 雷击对碳纤维增强型航空复合材料损伤的影响[J]. 材料工程, 2016, 44(12): 92-99.
ZHANG B, CHEN X N, HUANG L Y, et al.Effects of lightning strike on damage of aeronautical carbon fiber reinforced plastic[J]. Journal of materials engineering, 2016, 44(12): 92-99.
[15] 孙兴祥, 孔令强, 谭波, 等. 碳纤维复丝拉伸样条断面形貌分析[J]. 高科技纤维与应用, 2020, 45(1): 22-25.
SUN X X, KONG L Q, TAN B, et al.Analysis of the cross section morphology of carbon fiber multifilament tensile samples[J]. Hi-tech fiber and application, 2020, 45(1): 22-25.
[16] MIGUEL N D, CEBOLLA R O, ACOSTA B, et al.Compressed hydrogen tanks for on-board application: thermal behaviour during cycling[J]. International journal of hydrogen energy, 2015, 40: 6449-6458.
[17] YAMASHITA A, KONDO M, GOTO S, et al. Development of high-pressure hydrogen storage system for the Toyota “Mirai”[C]//SAE2015 World Congress & Exhibition, 14 Apr 2015, Cobo Convention Center in Detroit, United States, SAE Technical Paper 2015-01-1169, 2015
[18] LI B, HAN B, LI Q, et al.Study on hazards from high-pressure on-board type Ⅲ hydrogen tank in fire scenario: consequences and response behaviours[J]. International journal of hydrogen energy, 2022, 47: 2759-2770.
[19] KODAMA H, OKAZAKI S, JIANG Y F, et al.Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding[J]. Precision engineering, 2020, 65: 53-63.
[20] RUBAN S, HEUDIER L, JAMOIS D, et al.Fire risk on high-pressure full composite cylinders for automotive applications[J]. International journal of hydrogen energy, 2012, 37: 17630-17638.
[21] LI Z Y, LUO Y Y.Comparisons of hazard distances and accident durations between hydrogen vehicles and CNG vehicles[J]. International journal of hydrogen energy, 2019, 44(17): 8954-8959.
[22] 王志超, 曲芳, 王志, 等. T800碳纤维/环氧复合材料燃烧行为的实验研究[J]. 塑料科技, 2021, 49(9): 1-5.
WANG Z C, QU F, WANG Z, et al.Experimental study on combustion behavior of T800 carbon fiber/epoxy composites[J]. Plastics science and technology, 2021, 49(9): 1-5.
[23] YAO L, ZHANG S F, CAO X J, et al.Tensile mechanical behavior and failure mechanisms of fiber metal laminates under various temperature environments[J]. Composite structures, 2022, 284: 115142.
[24] MOLKOV V, KASHKAROV S.Blast wave from a high-pressure gas tank rupture in a fire: stand-alone and under-vehicle hydrogen tanks[J]. International journal of hydrogen energy, 2015, 40(36): 12581-12603.
[25] LI D Y, ZHU G Q, ZHU H, et al.Flame spread and smoke temperature of full-scale fire test of car fire[J]. Case studies in thermal engineering, 2017, 10: 315-324.
[26] FEIH S, MOURITZ A P.Tensile properties of carbon fibers and carbon fiber-polymer composites in fire[J]. Compos part A: applied science and manufacturing, 2012, 43: 765-772.
[27] 李强, 于景媛, 穆柏春, 等. 表面复合改性碳纤维增强HA复合材料[J]. 材料热处理学报, 2014, 35(8): 7-11.
LI Q, YU J Y, MU B C, et al.Hydroxyapatite composites reinforced by carbon fibers after compound modification[J]. Transactions of materials and heat treatment, 2014, 35(8): 7-11.
基金
国家重点研发计划(2021YFB4000900); 中央引导地方科技发展专项(2022JH6/100100027); 大连市科技创新项目(2021JJ13SN79)