为进一步了解整个尾流区域的速度衰减空间分布特征,提出一种三维全尾流模型。首先,采用高阶高斯函数预测尾流剖面,其在近尾流区由顶帽形演变为远尾流区的高斯形;其次,考虑风切变效应,引入风切变入流与均匀入流的风速差;此外,考虑到尾流膨胀的各向异性,在垂直方向和水平方向采用不同的尾流膨胀系数;最后,通过风场实验验证所提三维全尾流模型的准确性,结果表明所提出的全尾流模型预测的相对误差基本在5%以内,能够较好地预测整个尾流区域的三维分布。
Abstract
To further understand the spatial distribution characteristics of velocity attenuation in the whole wake region, a three-dimensional full wake model is proposed in this paper. Firstly, the high-order Gaussian function is used to predict the wake profile, which evolves from the top-hat shape in the near wake region to the Gaussian shape in the far wake region. Secondly, considering the effect of wind shear, the wind speed difference between wind shear inflow and uniform inflow is introduced; In addition, considering the anisotropy of wake expansion, different wake expansion coefficients are adopted in the vertical and horizontal directions; Finally, the accuracy of the proposed three-dimensional full wake model is verified by wind field experiments. The results show that the relative errors of the proposed full wake model are basically within 5%, which can better predict the three-dimensional distribution of the entire wake region.
关键词
风力机 /
尾流模型 /
风切变 /
风场实验 /
高阶高斯函数
Key words
wind turbines /
wake model /
wind shear /
wind field experiment /
high-order Gaussian function
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈文婷, 张铂炅, 林勇刚, 等. 基于激光雷达的风力机分离测风独立变桨控制策略[J]. 太阳能学报, 2022, 43(2): 415-423.
CHEN W T, ZHANG B J, LIN Y G, et al.Separated wind measurement individual pitch control of wind turbine based on lidar[J]. Acta energiae solaris sinica, 2022, 43(2): 415-423.
[2] JENSEN N O.A note on wind generator interaction[R]. Risø National Laboratory(Risø-M-2411), 1983.
[3] TIAN L L, ZHU W J, SHEN W Z, et al.Development and validation of a new two-dimensional wake model for wind turbine wakes[J]. Journal of wind engineering and industrial aerodynamics, 2015, 137: 90-99.
[4] GAO X X, YANG H X, LU L.Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model[J]. Applied energy, 2016, 174: 192-200.
[5] GAO X X, LI B B, WANG T Y, et al.Investigation and validation of 3D wake model for horizontal-axis wind turbines based on filed measurements[J]. Applied energy, 2020, 260: 114272.
[6] 宋翌蕾, 田琳琳, 赵宁. 风力机三维尾流模型的提出与校核[J]. 太阳能学报, 2021, 42(2): 129-135.
SONG Y L, TIAN L L, ZHAO N.Proposal and validation of a new 3D wake model for wind turbine[J]. Acta energiae solaris sinica, 2021, 42(2): 129-135.
[7] BLONDEL F, CATHELAIN M.An alternative form of the super-Gaussian wind turbine wake model[J]. Wind energy science, 2020, 5(3): 1225-1236.
[8] SCHREIBER J, BALBAA A, BOTTASSO C L.A double-Gaussian wake model[J]. Wind energy, 2020, 5: 237-244.
[9] HE R Y, YANG H X, SUN H Y, et al. A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes[J]. Applied energy, 2021, 296: 117059.1-117059.15.
[10] KIM H, SINGH C, SPRINTSON A.Simulation and estimation of reliability in a wind farm considering the wake effect[J]. IEEE transactions on sustainable energy, 2012, 3(2): 274-282.
[11] ABKAR M, PORTé-AGEL F.Influence of atmospheric stability on wind-turbine wakes: a large-eddy simulation study[J]. Physics of fluids, 2015, 27(3): 467-510.
[12] SHU Z R, LI Q S, HE Y C, et al.Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications[J]. Applied energy, 2016, 169: 150-163.
[13] KUMER V-M, REUDER J, DORNINGER M, et al.Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications[J]. Renewable energy, 2016, 99: 898-910.
基金
国家自然科学基金(52076081); 河北省自然科学基金(E2019502072); 中央高校基本科研基金(2020MS107)