基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法

陈伟, 雷欢, 裴婷婷, 李旭斌

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 175-181.

PDF(2302 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2302 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 175-181. DOI: 10.19912/j.0254-0096.tynxb.2022-0435

基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法

  • 陈伟, 雷欢, 裴婷婷, 李旭斌
作者信息 +

REMAINING LIFE PREDICTION METHOD OF PHOTOVOLTAIC MODULES BASED ON DEGRADATION TRAJECTORY AND WIENER MODEL

  • Chen Wei, Lei Huan, Pei Tingting, Li Xubin
Author information +
文章历史 +

摘要

针对光伏组件退化过程呈现的非单调、随机特性以及对组件剩余寿命自适应预测的需求,建立基于维纳(Wiener)过程的退化模型,在此基础上,提出一种结合退化轨迹自适应更新光伏组件剩余寿命的方法。首先,构建基于Wiener过程的光伏组件功率退化模型,刻画组件退化过程的非单调性以及组件退化过程的时间不确定性和个体差异性;然后,基于光伏组件的退化轨迹,联合贝叶斯更新和期望最大化(EM)算法对模型参数进行实时自适应更新,并在此基础上预测光伏组件的剩余寿命分布。最后,通过比较不同方法下光伏组件剩余寿命预测值的误差,验证所提方法的可行性与优越性。

Abstract

To address the non-monotonic and stochastic characteristics of the PV module degradation process and the need for adaptive prediction of the remaining life of the module,a degradation model based on the Wiener process is established,on this basis,a method for adaptively updating the remaining life of PV modules in conjunction with the degradation trajectory is proposed. First, the PV module power degradation model based on the Wiener process is constructed to describe the non-monotonicity of the module degradation process,as well as the time uncertainty and individual differences of the module degradation process. Then, based on the degradation trajectory of the PV module,the Bayesian update and expectation maximization (EM) algorithm are combined to perform a real-time adaptive update of the model parameters,on this basis,the remaining life distribution of PV module is predicted. Finally, the feasibility and superiority of the proposed method are verified by comparing the errors of the remaining life prediction values of PV modules under different scenarios.

关键词

光伏组件 / 退化 / 失效 / 随机模型 / 剩余寿命

Key words

photovoltaic modules / degradation / failure / stochastic model / remaining life

引用本文

导出引用
陈伟, 雷欢, 裴婷婷, 李旭斌. 基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法[J]. 太阳能学报. 2023, 44(7): 175-181 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0435
Chen Wei, Lei Huan, Pei Tingting, Li Xubin. REMAINING LIFE PREDICTION METHOD OF PHOTOVOLTAIC MODULES BASED ON DEGRADATION TRAJECTORY AND WIENER MODEL[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 175-181 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0435
中图分类号: TM615   

参考文献

[1] PHINIKARIDES A, KINDYNI N, MAKRIDES G,et al.Review of photovoltaic degradation rate methodologies[J].Renewable and sustainable energy reviews, 2014, 40: 143-152.
[2] PARK S H, KIM J H.Life time estimation of LED lamp using gamma process model[J]. Microelectronics reliability,2016,57:71-78.
[3] 王平, 杜炜, 张海宁, 等. 表面积灰影响光伏组件泄漏电流与衰减寿命的研究[J]. 太阳能学报, 2019, 40(1):119-125.
WANG P, DU W, ZHANG H N, et al.Pollution impact on the leakage current and power degradation of photovoltaic modules[J]. Acta energiae solaris sinica,2019, 40(1): 119-125.
[4] 王喜炜, 白建波, 宋昊, 等. 光伏组件加速老化试验可靠性及其寿命分布研究[J]. 可再生能源, 2017, 35(5):675-680.
WANG X W, BAI J B, SONG H, et al.Reliability and lifetime distribution study of photovoltaic modules using accelerated aging test[J]. Renewable energy resources,2017, 35(5): 675-680.
[5] KAAYA I, KOEHL M, MEHILLI A P,et al.Modeling outdoor service lifetime prediction of PV modules: effects of combined climatic stressors on PV module power degradation[J]. IEEE journal of photovoltaics, 2019, 9(4): 1105-1112.
[6] KAAYA I, ASCENCIO-VáSQUEZ J, WEISS K A, et al.Assessment of uncertainties and variations in PV modules degradation rates and lifetime predictions using physical models[J]. Solar energy, 2021, 218: 354-367.
[7] KAAYA I, LINDIG S, WEISS K A, et al.Photovoltaic lifetime forecast model based on degradation patterns[J].Progress in photovoltaics: research and applications, 2020, 28(10): 979-992.
[8] 李天梅, 司小胜, 刘翔, 等. 大数据下数模联动的随机退化设备剩余寿命预测技术[J]. 自动化学报, 2022, 48(9): 2119-2141.
LI T M, SI X S, LIU X, et al.Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data[J]. Acta automatica sinica, 2022, 48(9): 2119-2141.
[9] SI X S, WANG W B, HU C H, et al.Remaining useful life estimation:a review on the statistical data driven approaches[J]. European journal of operational research,2011, 213(1): 1-14.
[10] 刘桂雄, 余荣斌, 徐欢. 加速退化下光伏组件伪失效寿命分布估算[J]. 光学精密工程, 2016, 24(9): 2183-2191.
LIU G X,YU R B,XU H.Estimation of pseudo-failure lifetime distribution for photovoltaic modules based on accelerated degradation[J]. Optics and precision engineering, 2016, 24(9): 2183-2191.
[11] VáZQUEZ M, REY-STOLLE I. Photovoltaic module reliability model based on field degradation studies[J].Progress in photovoltaics: research and applications, 2008, 16(5): 419-433.
[12] 刘卫东, 文根, 鄢伟安, 等. 基于退化数据和非线性伽马过程的光伏组件现场寿命评估[J]. 计算机集成制造系统, 2021, 27(12): 3494-3502.
LIU W D, WEN G, YAN W A, et al.Field lifetime assessment of photovoltaic modules based on degradation data-driven and nonlinear Gamma processes[J]. Computer integrated manufacturing systems, 2021, 27(12): 3494-3502.
[13] PARK S H, KIM J H.Application of gamma process model to estimate the lifetime of photovoltaic modules[J]. Solar energy, 2017, 147: 390-398.
[14] ZHANG Z X, SI X S, HU C H, et al.Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods[J]. European journal of operational research, 2018, 271(3): 775-796.
[15] CHARKI A, LARONDE R, BIGAUD D.Accelerated degradation testing of a photovoltaic module[J]. Journal of photonics for energy, 2013, 3(1): 033099.
[16] JOSEPH V R, YU I T.Reliability improvement experiments with degradation data[J]. IEEE transactions on reliability, 2006, 55(1): 149-157.
[17] JARDINE A K S, LIN D M, BANjEVIC D. A review on machinery diagnostics and prognostics implementing condition-based maintenance[J]. Mechanical systems and signal processing, 2006, 20(7): 1483-1510.
[18] 余荣斌, 刘桂雄, 徐欢. 基于β分布统示法的光伏组件性能退化可靠度估算[J]. 仪器仪表学报, 2015, 36(11): 2586-2593.
YU R B, LIU G X, XU H.β-distribution uniform expression based photovoltaic modules reliability evaluation with degradation data distribution[J]. Chinese journal of scientific instrument, 2015, 36(11): 2586-2593.
[19] SESHADRI V.The inverse Gaussian distribution: statistical theory and applications[M]. New York: Springer Science & Business Media, 2012: 43-44.
[20] WANG W B, CARR M, XU W J,et al.A model for residual life prediction based on brownian motion with an adaptive drift[J]. Microelectronics reliability, 2011, 51(2): 285-293.
[21] 司小胜, 胡昌华, 李娟, 等. Bayesian更新与EM算法协作下退化数据驱动的剩余寿命估计方法[J]. 模式识别与人工智能, 2013, 26(4): 357-365.
SI X S, HU C H, LI J, et al.Degradation data-driven remaining useful life estimation approach under collaboration between Bayesian updating and EM algorithm[J]. Pattern recognition and artificial intelligence, 2013, 26(4): 357-365.
[22] 杨志凌, 刘俊华. 基于数据融合和Wiener过程的风电轴承剩余寿命预测[J]. 太阳能学报,2021, 42(10): 189-194.
YANG Z L, LIU J H.Remaining life prediction of wind turbine bearings based on data fusion and Wiener processes[J]. Acta energiae solaris sinica,2021, 42(10): 189-194.

基金

国家自然科学基金(51767017; 51867015); 甘肃省基础研究创新群体项目(18JR3RA133)

PDF(2302 KB)

Accesses

Citation

Detail

段落导航
相关文章

/