新型风浪联合发电浮式平台浮筒-立柱-浮子多尺度流场演化与荷载特性

赵永发, 柯世堂, 员亦雯, 王硕, 李晔, 任贺贺

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 370-379.

PDF(4437 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(4437 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 370-379. DOI: 10.19912/j.0254-0096.tynxb.2022-0438

新型风浪联合发电浮式平台浮筒-立柱-浮子多尺度流场演化与荷载特性

  • 赵永发1, 柯世堂1, 员亦雯1, 王硕1, 李晔2, 任贺贺1
作者信息 +

MULTI-SCALE FLOW FIELD INTERFERENCE AND LOAD CHARACTERISTICS OF NEW TYPE OF WIND-WAVE COMBINED POWER GENERATION FLOATING PLATFORM BUOY-COLUMN-FLOATER

  • Zhao Yongfa1, Ke Shitang1, Yun Yiwen1, Wang Shuo1, Li Ye2, Ren Hehe1
Author information +
文章历史 +

摘要

风能波浪能联合发电是实现“海上风电+”融合发展的最新模式,而风浪联合发电结构浮式平台中浮筒、立柱和浮子存在不同尺度的圆柱间干扰效应,对整个结构体系的荷载分布和整体稳定影响不可忽略。提出一种适合中国南海海况的新型风能-波浪能联合发电结构体系,再基于延迟脱体涡模拟方法分析平台内部波浪场演化过程,揭示平台区域水质点能量分布特性以及多浮体干扰机理,最后对比研究浮子对风浪联合发电平台水动力荷载的影响特性。结果表明:浮子的存在影响到两种平台各区域的水体能量变化,最大能量分布区域由波浪传播起始位置区域转变为浮子影响下波浪非线性干扰强烈的区域;浮子顺向波浪力最高达到8.27×105量级,较单浮子增幅22.3%,风浪联合发电平台中间立柱顺向波浪力极值荷载较半潜式平台减幅11.3%,但使得平台立柱所受顺向波浪荷载能量部分往高频转移。研究结论可为此类新型风浪联合发电结构体系水动力荷载设计提供科学依据。

Abstract

Wind and wave energy combined power generation is the latest mode to realize the integration of “Offshore Wind Power +” development. In the floating platform of wind and wave combined power generation structure, there are different scale cylindrical interference effects among buoys, columns and floaters, which cannot be ignored on the load distribution and overall stability of the whole structure system. A new wind-wave energy combined power generation structure system suitable for the South China Sea is proposed. Based on the delayed detached eddy simulation method, the evolution process of wave field inside the platform is analyzed, and the energy distribution characteristics of water quality points in the platform area and the interference mechanism of multiple floating bodies are revealed. Finally, the influence of floating bodies on the hydrodynamic load of the wind-wave combined power generation platform is compared and studied. The results show that the presence of buoys affects the change of water energy in each region of the two platforms, and the maximum energy distribution area changes from the initial position of wave propagation to the area with strong nonlinear wave interference under the influence of buoys. The maximum longitudinal wave force of the float is 8.27×105, which is 22.3 % higher than that of the single float. The maximum longitudinal wave force of the middle column of the wind-wave combined power generation platform is 11.3 % lower than that of the semi-submersible platform, but the energy of the longitudinal wave load on the platform column is transferred to high frequency. The research conclusions can provide scientific basis for the hydrodynamic load design of such new wind-wave combined power generation structure system.

关键词

风浪联合发电 / 波浪场 / 多尺度流场干扰 / 荷载特性 / 空间相关性

Key words

wind wave combined power generation / wave field / multi-scale flow interference / load characteristics / spatial correlation

引用本文

导出引用
赵永发, 柯世堂, 员亦雯, 王硕, 李晔, 任贺贺. 新型风浪联合发电浮式平台浮筒-立柱-浮子多尺度流场演化与荷载特性[J]. 太阳能学报. 2023, 44(7): 370-379 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0438
Zhao Yongfa, Ke Shitang, Yun Yiwen, Wang Shuo, Li Ye, Ren Hehe. MULTI-SCALE FLOW FIELD INTERFERENCE AND LOAD CHARACTERISTICS OF NEW TYPE OF WIND-WAVE COMBINED POWER GENERATION FLOATING PLATFORM BUOY-COLUMN-FLOATER[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 370-379 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0438
中图分类号: TU312+.1   

参考文献

[1] 全球能源互联网发展合作组织. 中国“十四五”电力发展规划研究[R]. 2020.
Global Energy Internet Development Cooperation Organi-zation. Research on China’s 14th five-year electric power development plan[R]. 2020.
[2] 周斌珍, 胡俭俭, 谢彬, 等. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649.
ZHOU B Z, HU J J, XIE B, et al.Research progress in hydrodynamics of wind-wave combined power generation system[J]. Chinese journal of theoretical and applied mechanics, 2019, 51(6): 1641-1649.
[3] 邓露, 刘建祥. 半潜式浮式风机平台绕流力学特性与尾流分析[J]. 湖南大学学报(自然科学版), 2020, 47(7): 1-9.
DENG L, LIU J X.Mechanical characteristics and wake analysis of flow past a semi-submersible floating wind turbine platform[J]. Journal of Hunan University (natural sciences), 2020, 47(7): 1-9.
[4] 霍发力, 张健, 杨德庆. 工作水深对浮式平台波浪砰击影响的敏感性分析[J]. 上海交通大学学报, 2017, 51(4): 410-417.
HUO F L, ZHANG J,YANG D Q.Sensitivity study of wave slamming with respect to water depth for floating platform[J]. Journal of Shanghai Jiao Tong University, 2017, 51(4): 410-417.
[5] 单铁兵. 波浪爬升的机理性探索和半潜式平台气隙响应的关键特性研究[D]. 上海: 上海交通大学, 2013.
SHAN T B.Research on the mechanism of wave run-up and the key characteristics of air-gap response of semi-submersible[D]. Shanghai: Shanghai Jiao Tong University, 2013.
[6] 何广华, 张志刚, 张子豪, 等. 群遮效应对海上结构物波漂移力的低减作用[J]. 哈尔滨工程大学学报, 2017, 38(11): 1676-1681.
HE G H, ZHANG Z G, ZHANG Z H, et al.Reduction in wave drift force on marine structures by cloaking phenomenon[J]. Journal of Harbin Engineering University, 2017, 38(11): 1676-1681.
[7] SHADMAN M, ESTEFEN S F, RODRIGUEZ C A, et al.A geometrical optimization method applied to a heaving point absorber wave energy converter[J]. Renewable energy, 2018, 115: 533-546.
[8] 尹则高, 苗宜培, 冯颖楠, 等. 规则波作用下垂荡浮子间歇射流装置水动力数值研究[J]. 太阳能学报, 2021, 42(6): 39-44.
YIN Z G, MIAO Y P, FENG Y N, et al.Hydrodynamic numerical study of intermittent jet device with heaving buoy under regular wave[J]. Acta energiae solaris sinica, 2021, 42(6): 39-44.
[9] 罗星, 王若宏, 刘延俊. 波浪能浮体在不同波况下的波浪砰击特性[J]. 山东大学学报(工学版), 2021, 51(6): 26-33,40.
LUO X, WANG R H, LIU Y J.Wave slamming charac-teristics of an oscillating buoy of wave energy converter under different wave conditions[J]. Journal of Shandong University(engineering science), 2021, 51(6): 26-33,40.
[10] WAN L, GAO Z, MOAN T.Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes[J]. Coastal engineering, 2015, 104: 151-169.
[11] 任年鑫, 朱莹, 马哲, 等. 新型浮式风能-波浪能集成结构系统耦合动力分析[J]. 太阳能学报, 2020, 41(5): 159-165.
REN N X, ZHU Y, MA Z, et al.Coupled dynamic analysis of a novel floating wind energy and wave energy combination system[J]. Acta energiae solaris sinica, 2020, 41(5): 159-165.
[12] 刘周, 樊天慧, 陈超核, 等. 3种典型半潜式浮式风机基础水动力性能比较[J]. 中国海洋平台, 2021, 36(2): 1-10.
LIU Z, FAN T H, CHEN C H, et al.Comparison on hydrodynamic performance of three kinds of typical semi-submersible floating foundations of offshore wind turbine[J]. China offshore platform, 2021, 36(2): 1-10.
[13] HU J J, ZHOU B Z, VOGEL C, et al.Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters[J]. Applied energy, 2020, 269: 114998.
[14] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and computational fluid dynamics, 2006, 20(3): 181-195.
[15] HUANG Y, ZHUANG Y, WAN D C.Hydrodynamic study and performance analysis of the OC4-DeepCWind platform by CFD method[J]. International journal of computational methods, 2021, 18(4): 2050020.
[16] JTS 145—2015, 港口与航道水文规范[S].
JTS 145—2015, Code of hydrology for harbour and water-way[S].

基金

国家重点研发计划(2017YFE0132000; 2019YFB1503701); 江苏省杰出青年科学基金(BK20211518); 国家自然科学基金(5207080548; 5211101879)

PDF(4437 KB)

Accesses

Citation

Detail

段落导航
相关文章

/