对于高耸结构在极限工况下对基础底部脱开面积,目前各个规范均有控制要求,但均未给出确定的计算方法。这对于工程师设计基础而言颇为不便。以方形基础为例,基于半平面接触应力理论和线弹性应力分布假设,分别推导和对比了基底脱开面积和接触应力的不同计算方法。类似地,以圆形风电机组基础为例,分别基于半空间接触应力理论和线弹性应力分布假设,也做了分析和对比。脱开比例限制和计算公式可作为实际工程设计分析的参考。
Abstract
In limit design states,the different limitations of gapping between the subsoil and the foundation slab of high-rising structures have been requested in existing technical norms, however, the calculation methods of gapping are not given very clearly. This is really inconvenient in foundation design for engineers. Taking the rectangular foundation as an example, based on the half-plane contact stress theory and the linear elastic stress distribution assumption, the different calculation methods of base gapping area and contact stress are deduced and compared respectively. Similarly, taking the circular wind turbine foundation as an example, based on the half-space contact stress theory and the linear elastic stress distribution assumption, the analysis and comparison are also made. The gapping limitations and formulas can be use as a reference for actual engineering design analysis.
关键词
高耸结构 /
风电机组 /
基础脱开 /
偏心距 /
接触应力
Key words
high-rising structure /
wind turbines /
foundation gapping /
eccentricity /
contact stress
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GB 50135—2019, 高耸结构设计标准[S].
GB 50135—2019, Standard for design of high-rising structures[S].
[2] GB 50011—2010(2016年版), 建筑抗震设计规范[S].
GB 50011—2010(version2016), Code for seismic design of buildings[S] .
[3] NB/T 10311—2019, 陆上风电场工程风电机组基础设计规范[S].
NB/T 10311—2019, Code for design of wind turbine foundations for onshore wind power projects[S].
[4] DNVGL-ST-0126, Support structures for wind turbines[S].
[5] 陈俊岭, 马人乐. 圆(环)形基础基底压力的计算[J]. 特种结构, 2003, 20(4): 23-24.
CHEN J L, MA R L.Calculation of gross loading intensity acting on ringed or rounded foundation[J]. Special structures, 2003, 20(4): 23-24.
[6] 陈俊岭, 黎晓斌, 黄冬平. 关于高耸规范中圆(环)形扩展基础的修编探讨[J]. 特种结构, 2015, 32(4): 91-96.
CHEN J L, LI X B, HUANG D P.Discussion on a revision about circular or ring foundation in code for design of high-rising structures[J]. Special structures, 2015, 32(4): 91-96.
[7] 加林. 弹性理论的接触问题[M]. 北京:科学出版社, 1958.
GALIN А.Contact problems in the theory of elasticity[M]. Beijing: Science Press, 1958.
[8] 天津大学建筑工程学院. 浙江大陈岛风电场技改项目, 风电机组基础计算及加固方案[R].R-GW-21, 2021.
School of Civil Engineering of Tianjin University. Improvement for Dachen island wind farm in Zhejiang, calculation and reinforcement plan for wind turbine foundations[R].R-GW-21, 2021.
[9] 山东启明电力有限公司. 歌美飒太平山风电场, 风电机组基础设计图[R].R-SG-10, 2010.
Shandong Qiming Power Company. Gamesa Taiping mountain wind farm, design drawings of wind turbine foundations[R].R-SG-10, 2010.
[10] GB 50007—2011, 建筑地基基础设计规范[S].
GB 50007—2011, Code for design of building foundation[S].
[11] TIMOSHENKO S P.History of strength of materials[M].New York: McGraw-Hill, 1953.
[12] TIMOSHENKO S P.Theory of elasticity[M]. New York: McGraw-Hill, 1970.
[13] GLADWELL G M L. Contact problems in the classical theory of elasticity[M]. Netherland: Sijthoff & Noordhoff, 1980.