基于策略驱动的混合能源微电网动态调度

董海, 曹晓兰

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 22-29.

PDF(1795 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1795 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 22-29. DOI: 10.19912/j.0254-0096.tynxb.2022-0452

基于策略驱动的混合能源微电网动态调度

  • 董海1, 曹晓兰1,2
作者信息 +

DYNAMIC DISPATCHING OF HYBRID ENERGY MICROGRIDS BASED ON STRATEGY-DRIVEN

  • Dong Hai1, Cao Xiaolan1,2
Author information +
文章历史 +

摘要

针对混合能源微电网动态调度优化问题,提出基于多模式调度策略和调度激励相结合的策略驱动优化调度方法,以实现储能单元与外部电网功率互补,优化电源出力。首先,综合考虑混合能源微电网基本结构,建立微电网模型,基于爬坡功率、发电单元出力、能量守恒等约束条件,提出运行成本和环境整治成本最小的目标函数;其次,在成功经验和专家知识的基础上,结合调度激励机制提出微电网调度策略驱动模型;最后,通过Matlab仿真及算法对比表明,该优化算法具有收敛速度快、局部与全局的搜索能力强等特点。

Abstract

Aiming at the dynamic dispatching optimization of hybrid energy microgrids, a strategy-driven optimal dispatching method based on the combination of multi-mode dispatching strategy and dispatching incentive is proposed. The power complementation between the energy storage unit and the external power grid is realized, and the power output is optimized. Firstly, considering the basic structure of hybrid energy microgrids, a microgrid model is established. The objective function of minimizing operation cost and environmental remediation cost is proposed based on the constraints of climbing power, power unit output and energy conservation. Secondly, the dispatching strategy-driven model of microgrids is proposed based on the successful experience and expert knowledge, combined with dispatching incentive mechanism. Finally, MATLAB simulation and algorithm comparison show that the proposed algorithm has the characteristics of fast convergence, strong local and global search ability.

关键词

微电网 / 动态调度 / 多目标优化 / NSGA-Ⅱ-PSO算法 / 策略驱动

Key words

microgrids / dynamic dispatching / multi-objective optimization / NSGA-Ⅱ-PSO algorithm / strategy-driven

引用本文

导出引用
董海, 曹晓兰. 基于策略驱动的混合能源微电网动态调度[J]. 太阳能学报. 2023, 44(7): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0452
Dong Hai, Cao Xiaolan. DYNAMIC DISPATCHING OF HYBRID ENERGY MICROGRIDS BASED ON STRATEGY-DRIVEN[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 22-29 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0452
中图分类号: TM734   

参考文献

[1] 张鸿宇, 黄晓丹, 张达, 等. 加速能源转型的经济社会效益评估[J]. 中国科学院院刊, 2021, 36(9): 1039-1048.
ZHANG H Y, HUANG X D, ZHANG D, et al.Evaluating economic and social benefits of accelerated energy transition[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(9): 1039-1048.
[2] 李庆民, 于万水, 赵继尧. 支撑“双碳”目标的风光发电装备安全运行关键技术[J]. 高电压技术, 2021, 47(9): 3047-3060.
LI Q M, YU W S, ZHAN J Y.Key technologies for the safe operation of wind and solar power generation equipment in support of the‘peak CO2 emissions and carbon neutrality’ policy[J]. High voltage engineering, 2021, 47(9): 3047-3060.
[3] 桑博, 张涛, 刘亚杰, 等. 多微电网能量管理系统研究综述[J]. 中国电机工程学报, 2020, 40(10): 3077-3093.
SANG B, ZHANG T, LIU Y J, et al.Energy management system research of multi-microgrid: a review[J]. Proceedings of the CSEE, 2020, 40(10): 3077-3093.
[4] AMIR E M,MOHSEN K.Power sharing in hybrid microgrids using a narmonic-based multidimensional droop[J]. IEEE transactions on industrial informatics, 2020, 16(1): 109-119.
[5] HE L J, WEI Z B, YAN H, et al.A day-ahead scheduling optimization model of multi-microgrid considering interactive power control[C]//The 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG2019), Hubei, China, 2019.
[6] 李瑜, 张占强, 孟克其劳, 等. 基于分层控制的孤岛微电网储能优化控制策略[J]. 储能科学与技术, 2022,11(1): 176-184.
LI Y, ZHANG Z Q, MENG K Q L, et al. Optimal control strategy for energy storage in island microgrid based on hierarchical control[J]. Energy storage science and technology, 2022, 11(1): 176-184.
[7] LIU Z X, GAO Y Y, CHENG J M, et al.Optimal dispatching strategy for microgrid considering combined cooling, heating and power[C]//13th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), Phuket, Thailand, 2021.
[8] 赵秋源. 光伏微电网发电系统离并网控制策略研究与设计[D]. 南宁: 广西大学, 2021.
ZHAO Q Y.Research and design of off grid control strategy for photovoltaic microgrid power generation system[D]. Nanning: Guangxi University, 2021.
[9] 宋丹, 张武洋, 王成华. 含光储系统的微电网能量协调控制策略[J]. 哈尔滨理工大学学报, 2021, 26(6): 94-101.
SONG D, ZHANG W Y, WANG C H.Coordinated control strategy of microgrid energy with optical storage system[J]. Journal of Harbin University of Science and Technology, 2021, 26(6): 94-101.
[10] HANDSCBIN E, NEISE F, NEIMIANN H, et al.Optimal operation of dispersed generation under uncertainty using mathematical programming[J]. Electrical power and energy systems, 2016, 28(9): 618-626.
[11] 曹阳, 温彩凤, 刘珍, 等. 基于RSM和NSGA-Ⅱ法的风电系统经济优化研究[J]. 太阳能学报, 2022, 43(1): 161-167.
CAO Y, WEN C F, LIU Z, et al.Multi-objective optimization of wind power systems based on RSM and NSGA-Ⅱ methods[J]. Acta energiae solaris sinica, 2022, 43(1): 161-167.
[12] 刘舒, 李正力, 王翼, 等. 含分布式发电的微电网中储能装置容量优化配置[J]. 电力系统保护与控制, 2016, 44(3): 78-84.
LIU S, LI Z L, WANG Y, et al.Optimal capacity allocation of energy storage in micro-grid with distributed generation[J]. Power system protection and control, 2016, 44(3): 78-84.
[13] PILO F, PISANO G, SOMA G G.Neural implementation of micro grid central controllers[C]//IEEE 5th International Conference on Industrial Informatics,Vienna, Austria, 2007.
[14] 沈珺, 柳伟, 李虎成, 等. 基于强化学习的多微电网分布式二次优化控制[J]. 电力系统自动化, 2020, 44(5): 198-206.
SHEN J, LIU W, LI H C, et al.Reinforcement learning based distributed secondary optimal control for multiple microgrids[J]. Automation of electric power systems, 2020, 44(5): 198-206.
[15] 周凌志, 任永峰, 陈麒同, 等. 新型主从控制微电网运行控制策略研究[J]. 可再生能源, 2021, 39(8): 1100-1106.
ZHOU L Z,REN Y F, CHEN Q T, et al.Operation control strategy of new master-slave control for microgrid[J]. Renewable energy resources, 2021, 39(8): 1100-1106.
[16] 赵超, 王斌, 孙志新, 等. 基于改进灰狼算法的独立微电网容量优化配置[J]. 太阳能学报, 2022, 43(1): 256-262.
ZHAO C,WANG B, SUN Z X, et al.Optimal configuration optimization of islanded microgrid using improved grey wolf optimizer algorithm[J]. Acta energiae solaris sinica, 2022, 43(1): 256-262.
[17] MA Y W, LIU M J.Strategy-driven dynamic optimal dispatch for microgrids under TOU tariffs[C]//The IEEE 1st International Conference on Power Electronics, Computer Applications(ICPECA), Shenyang, China, 2021.
[18] YI Z, ZHAO H C, LIU C P, et al.Multi objective optimization of microgrid based on improved multi-objective particle swarm optimization[C]//The 3rd International Seminar On Computer Science And Engineering Technology(SCSET), Indianapolis, USA, 2022.
[19] 唐俊杰. 基于动态模糊混沌粒子群算法的微电网优化调度研究[D]. 广州: 广东工业大学, 2018.
TANG J J.Multi-objective of microgrid based on dynamic fuzzy chaotic swarm optimization[D]. Guangzhou: Guangdong University of Technology, 2018.
[20] 曹宇. 面向新能源的孤立微电网优化调度研究[D]. 上海: 上海电机学院, 2016.
CAO Y.Research on optimal scheduling of isolated micro-grid for hybrid new energy[D]. Shanghai: Shanghai Dianji University, 2016.
[21] 焦冰琦. 不确定性环境下的微电网规划与运行方法研究[D]. 天津: 天津大学, 2016.
JIAO B Q.Research on methodologies of planning and operation of microgrids under uncertainty[D]. Tianjin:Tianjin University, 2016.
[22] 赵珍珍, 王维庆, 樊小朝, 等. 基于NSGA-II-PSO算法的微电网多目标优化运行模式[J]. 电源学报, 2023, 21(1): 118-125.
ZHAO Z Z, WANG W Q, FAN X C, et al.Multi-objective optimization operation model of microgrid based on NSGA-II-PSO algorithm[J]. Journal of power supply, 2023, 21(1): 118-125.

基金

国家自然科学基金(71672117); 中央引导地方科技发展资金计划(2021JH6/10500149)

PDF(1795 KB)

Accesses

Citation

Detail

段落导航
相关文章

/