不同温度场下生物质热解特性及物质流和能量流分析

唐松标, 周卫红, 杨改秀

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 511-519.

PDF(1956 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1956 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 511-519. DOI: 10.19912/j.0254-0096.tynxb.2022-0454

不同温度场下生物质热解特性及物质流和能量流分析

  • 唐松标1,2, 周卫红2, 杨改秀1
作者信息 +

BIOMASS PYROLYSIS CHARACTERISTICS AND ANALYSIS OF MATERIAL FLOW AND ENERGY FLOW UNDER DIFFERENT TEMPERATURE

  • Tang Songbiao1,2, Zhou Weihong2, Yang Gaixiu1
Author information +
文章历史 +

摘要

研究木质纤维素类生物质(能源草)在500、600、700、800 ℃热解温度下三相产物的分布及理化特性。在此基础上,进一步结合数学模型,解析不同热解温度下整个热解过程中的质量流、元素流与能量流。研究结果表明,随着温度的升高,热解炭和热解油产率逐渐降低,热解炭的相对结晶度和石墨化程度增强,热解气产率逐渐升高。热解过程中,C、N元素从原料中流向气体产物的比例也随温度的升高而增加;800 ℃时,流向热解气中的C、N元素最高占比分别达到51.22%和34.05%。相应的热解气能量分布显著增加(由5.94%增至41.69%)。在整个热解范围内,热解能量回收总效率均在70%以上,600~800 ℃时热解气的输出能量完全可满足热解过程中需输入的能量。

Abstract

Firstly, the distribution and physicochemical properties of the three-phase products for lignocellulose biomass (energy grass) at different pyrolysis temperatures (500, 600, 700 and 800 ℃) are studied. Besides, the mathematical models were used to further investigate the mass flow, element flow and energy flow throughout the pyrolysis process at different pyrolysis temperatures. The results revealed that as the temperature increased the yields of biochar and bio-oil decreased, while, the relative crystallinity and degree of graphitization for biochar increase, and the yields of pyrolysis gas increase gradually. The flowing proportion of C and N elements into the gas products increases with the increase of temperature, where the maximum flowing proportion of C and N elements into pyrolysis gas are 51.22% and 34.05% at 800 ℃, respectively. Correspondingly, the energy distribution of pyrolysis gas increased significantly (from 5.94% to 41.69%). The total energy recovery efficiency is more than 70% for the whole pyrolysis process. The output energy of pyrolysis gas can fully meet the input energy required in the pyrolysis process at the temperature range of 600-800 ℃.

关键词

生物质 / 热解 / 物质流 / 能量流 / 温度场

Key words

biomass / pyrolysis / material flow / energy flow / temperature field

引用本文

导出引用
唐松标, 周卫红, 杨改秀. 不同温度场下生物质热解特性及物质流和能量流分析[J]. 太阳能学报. 2023, 44(7): 511-519 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0454
Tang Songbiao, Zhou Weihong, Yang Gaixiu. BIOMASS PYROLYSIS CHARACTERISTICS AND ANALYSIS OF MATERIAL FLOW AND ENERGY FLOW UNDER DIFFERENT TEMPERATURE[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 511-519 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0454
中图分类号: TK6   

参考文献

[1] LIU J J, HOU Q D, JU M T, et al.Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: a review[J]. Catalysts, 2020, 10(7): 742-768.
[2] HU Y D, ZHANG L L, HU J G, et al.Assessments of erianthus arundinaceus as a potential energy crop for bioethanol and biomethane production[J]. Bioresources, 2017, 12(4): 8786-8802.
[3] HOANG A T, ONG H C, FATTAH I M R, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability[J]. Fuel processing technology, 2021, 223: 106997.
[4] DHYANI V, BHASKAR T.A comprehensive review on the pyrolysis of lignocellulosic biomass[J]. Renewable energy, 2018, 129: 695-716.
[5] MIRANDA N T, MOTTA I L, MACIEL F R, et al.Sugarcane bagasse pyrolysis: a review of operating conditions and products properties[J]. Renewable & sustainable energy reviews, 2021, 149: 111394.
[6] WANG Z Y, GONG Z Q, WANG Z B, et al.Pyrolysis performance and kinetic analysis of oily sludge[J]. Journal of thermal analysis and calorimetry, 2022, 147(7): 4621-4633.
[7] WANG X Y, LYU W, GUO L, et al.Energy and exergy analysis of rice husk high-temperature pyrolysis[J]. International journal of hydrogen energy, 2016, 41(46): 21121-21130.
[8] KARVONEN J, KUNTTU J, SUOMINEN T, et al.Integrating fast pyrolysis reactor with combined heat and power plant improves environmental and energy efficiency in bio-oil production[J]. Journal of cleaner production, 2018, 183: 143-152.
[9] NREL/TP-510-42618:2008, Determination of structural carbohydrates and lignin in biomass[S].
[10] VALDEZ P J, NELSON M C, WANG H Y, et al.Hydrothermal liquefaction of nannochloropsis sp.: systematic study of process variables and analysis of the product fractions[J]. Biomass & bioenergy, 2012, 46: 317-331.
[11] TZANETIS K F, POSADA J A, RAMIREZ A.Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: the impact of reaction conditions on production costs and GHG emissions performance[J]. Renewable energy, 2017, 113: 1388-1398.
[12] CHEN W, YANG H P, CHEN Y Q, et al.Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials[J]. Journal of analytical and applied pyrolysis, 2016, 120: 186-193.
[13] KIM Y, PARKER W.A technical and economic evaluation of the pyrolysis of sewage sludge for the production of bio-oil[J]. Bioresource technology, 2008, 99(5): 1409-1416.
[14] XU F F, MING X, JIA R, et al.Effects of operating parameters on products yield and volatiles composition during fast pyrolysis of food waste in the presence of hydrogen[J]. Fuel processing technology, 2020, 210: 106558.
[15] SUN H L, FENG D D, SUN S Z, et al.Thermal evolution of gas-liquid-solid products and migration regulation of C/H/O elements during biomass pyrolysis[J]. Journal of analytical and applied pyrolysis, 2021, 156: 105128.
[16] HE X Y, LIU Z X, NIU W J, et al.Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues[J]. Energy, 2018, 143: 746-756.
[17] GAUTAM R, VARMA A K, VINU R.Apparent kinetics of fast pyrolysis of four different microalgae and product analyses using pyrolysis-FTIR and pyrolysis-GC/MS[J]. Energy and fuels, 2017, 31(11): 12339-12349.
[18] SAFDARI M S, AMINI E, WEISE D R, et al.Heating rate and temperature effects on pyrolysis products from live wildland fuels[J]. Fuel, 2019, 242: 295-304.
[19] LIU Y T, CHEN T, GAO B L, et al.Comparison between hydrogen-rich biogas production from conventional pyrolysis and microwave pyrolysis of sewage sludge: is microwave pyrolysis always better in the whole temperature range?[J]. International journal of hydrogen energy, 2021, 46(45): 23322-23333.
[20] DU Y, JIANG X, MA X, et al.Pyrolysis product evolution characteristics of bio-ferment residue using thermogravimetric analysis, fourier transform infrared spectroscopy, and mass spectrometry[J]. Journal of applied spectroscopy, 2015, 81(6): 1073-1077.
[21] WANG Z W, BURRA K G, ZHANG M J, et al.Syngas evolution and energy efficiency in CO2-assisted gasification of pine bark[J]. Applied energy, 2020, 269: 114996.
[22] LI J H, BURRA K G, WANG Z W, et al.Energy recovery from composite acetate polymer-biomass wastes via pyrolysis and CO2-assisted gasification[J]. Journal of energy resources technology, 2020, 143(4): 1-31.
[23] 胡二峰, 吴娟, 赵立欣, 等. 热解温度对回转窑玉米秸秆热解产物理化特性的影响[J]. 农业工程学报, 2019, 35(11): 233-238.
HU E F, WU J, ZHAO L X, et al.Evaluation on pyrolysis characteristics of straw in rotary kiln[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11): 233-238.
[24] XU S Y, CHEN J F, PENG H Y, et al.Effect of biomass type and pyrolysis temperature on nitrogen in biochar, and the comparison with hydrochar[J]. Fuel, 2021, 291: 120128.
[25] ZHANG Z K, ZHU Z Y, SHEN B X, et al.Insights into biochar and hydrochar production and applications: a review[J]. Energy, 2019, 171: 581-598.
[26] SOTOUDEHNIA F, RABIU A B, ALAYAT A, et al.Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard[J]. Journal of analytical and applied pyrolysis, 2020, 145: 104722.
[27] YE L H, WANG R R, JI G B, et al.From green tide to biochar: thermal decomposition kinetics and TG-FTIR study of microalgae from chaohu lake[J]. International journal of energy research, 2021, 45(5): 8083-8090.
[28] UCHIMIYA M, WARTELLE L H, KLASSON K T, et al.Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. Journal of agricultural and food chemistry, 2011, 59(6): 2501-2510.
[29] ZHAO S X, TA N, WANG X D.Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J]. Energies, 2017, 10(9): 1293.
[30] FU P, YI W M, BAI X Y, et al.Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues[J]. Bioresource technology, 2011, 102(17): 8211-8219.
[31] HASSAN Z, JONGKEUN P, ASIM R, et al.High-yield bio-oil production from macroalgae(Saccharina japonica) in supercritical ethanol and its combustion behavior[J]. Journal of agricultural and food chemistry, 2017, 327: 79-90.
[32] CHEN H F, WANG Y, XU G W, et al.Fuel-N evolution during the pyrolysis of industrial biomass wastes with high nitrogen content[J]. Energies, 2012, 5(12): 5418-5438.

基金

国家重点研发计划(2018YFE0111000); 国家自然科学基金面上项目(52176214); 广东省自然科学基金面上项目(2019A1515011971)

PDF(1956 KB)

Accesses

Citation

Detail

段落导航
相关文章

/