基于DFIG有功下限的风火系统经济调度模型

李生虎, 常雅玲, 朱争高, 陈东

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 345-351.

PDF(1925 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1925 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 345-351. DOI: 10.19912/j.0254-0096.tynxb.2022-0462

基于DFIG有功下限的风火系统经济调度模型

  • 李生虎1,2, 常雅玲1,2, 朱争高1,2, 陈东1,2
作者信息 +

ECONOMIC DISPATCH MODEL FOR WIND/THERMAL SYSTEM BASED ON LOWER ACTIVE POWER LIMIT OF DFIG

  • Li Shenghu1,2, Chang Yaling1,2, Zhu Zhenggao1,2, Chen Dong1,2
Author information +
文章历史 +

摘要

为解决大规模风电接入电网场景下并网火电机组台数和系统有功备用容量减少的问题,该文提出一种计及双馈感应发电机(DFIG)向下调度能力的风火系统经济调度模型。首先,综合深度调峰火电机组运行成本、开机成本、寿命损耗和风电弃风成本等,建立风火系统经济调度模型。其次,考虑到高风速下转子侧变流器(RSC)容量制约DFIG有功下限,该文计及RSC容量约束,提出DFIG有功下限求解算法,进而提出计及DFIG有功下限约束的风火系统经济调度模型。最后,IEEE 30节点算例结果表明所提经济调度模型可降低火电运行成本和风电弃风量。

Abstract

To solve the problem of the insufficient units of the integrated thermal generators and the power reserve of the system under the large-scale wind power access grid scenario, an economic dispatch model for the wind/thermal system with the downward dispatch capability to the doubly-fed induction generators (DFIGs) is proposed in this paper. Firstly, by including the operation cost, start cost, life loss of the thermal units, and the curtailment cost of the wind power, an economic dispatch model for the wind/thermal system is established. Secondly, since the capacity of rotorside converter (RSC) restricts the lower active power limit of DFIG with high wind speed, an analytical solution to the lower active power limit of DFIG considering the constraint to the RSC’s capacity is proposed, then the economic dispatch model with the lower limit is proposed for the wind/thermal system. Finally, the IEEE-30 node arithmetic results show that the proposed economic dispatch model reduces the operation cost of thermal power and curtailment for wind power.

关键词

风力机 / 风力发电 / 发电调度 / 火力发电站 / 深度调峰 / 有功下限

Key words

wind turbines / wind power / power generation dispatch / thermal generator / deep peak regulation / lower active power limit

引用本文

导出引用
李生虎, 常雅玲, 朱争高, 陈东. 基于DFIG有功下限的风火系统经济调度模型[J]. 太阳能学报. 2023, 44(7): 345-351 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0462
Li Shenghu, Chang Yaling, Zhu Zhenggao, Chen Dong. ECONOMIC DISPATCH MODEL FOR WIND/THERMAL SYSTEM BASED ON LOWER ACTIVE POWER LIMIT OF DFIG[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 345-351 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0462
中图分类号: TM732    TM614   

参考文献

[1] 付亦殊, 陈红坤, 姜欣, 等. 促进大规模风电消纳的双层调峰补偿机制研究[J]. 电力系统保护与控制, 2019, 47(4): 51-57.
FU Y S, CHEN H K, JIANG X, et al.A bi-layer peak-regulation compensation mechanism for large-scale wind power integration[J]. Power system protection and control, 2019, 47(4): 51-57.
[2] WANG C X, LU Z X, QIAO Y.A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems[J]. IEEE transactions on power systems, 2013, 28(1): 236-245.
[3] 向红吉, 戴朝华, 明杰, 等. 考虑低谷时刻负调峰能力及风电预测区间的多目标机组组合优化研究[J]. 电网技术, 2017, 41(6): 1912-1918.
XIANG H J, DAI C H, MING J, et al.Research on multi-objective optimization of unit commitment considering negative peak load regulation ability in valley load period and wind power prediction interval[J]. Power system technology, 2017, 41(6): 1912-1918.
[4] LIN Y, DING Y, SONG Y H, et al.A multi-state model for exploiting the reserve capability of wind power[J]. IEEE transactions on power systems, 2018, 33(3): 3358-3372.
[5] 陈青, 吴明兴, 刘英琪, 等. 面向风电市场化消纳的现货电能量-辅助服务联合运营机制[J]. 电力自动化设备, 2021, 41(3): 179-188.
CHEN Q, WU M X, LIU Y Q, et al.Joint operation mechanism of spot electric energy and auxiliary service for wind power market-oriented accommodation[J]. Electric power automation equipment, 2021, 41(3): 179-188.
[6] YIN S Y, ZHANG S F, ANDREWS-SPEED P, et al.Economic and environmental effects of peak regulation using coal-fired power for the priority dispatch of wind power in China[J]. Journal of cleaner production, 2017, 162: 361-370.
[7] YE L, ZHANG C H, TANG Y, et al.Hierarchical model predictive control strategy based on dynamic active power dispatch for wind power cluster integration[J]. IEEE transactions on power systems, 2019, 34(6): 4617-4629.
[8] WU Z, ZENG P L, ZHANG X P, et al.A solution to the chance-constrained two-stage stochastic program for unit commitment with wind energy integration[J]. IEEE transactions on power systems, 2016, 31(6): 4185-4196.
[9] 刘颖明, 王瑛玮, 王晓东, 等. 基于蚁狮算法的风电集群储能容量配置优化方法[J]. 太阳能学报, 2021, 42(1): 431-437.
LIU Y M, WANG Y W, WANG X D, et al.Optimization of storage capacity allocation in wind farm cluster based on ant lion optimization algorithm[J]. Acta energiae solaris sinica, 2021, 42(1): 431-437.
[10] ZHANG S T, BAI Y, YIN Y, et al.Multi-objective optimization of the wind farm dispatch problem using chaotic NSGA-II algorithm[C]//2018 Chinese Automation Congress (CAC), Xi’an, China, 2018.
[11] 陈炜, 吴军, 刘涤尘, 等. 计及有功备用的双馈感应发电机组功率优化控制[J]. 电力系统及其自动化学报, 2018, 30(7): 51-58.
CHEN W, WU J, LIU D C, et al.Power optimization control of doubly-fed induction generators considering active power reserve[J]. Proceedings of the CSU-EPSA, 2018, 30(7): 51-58.
[12] DVORKIN Y, ORTEGA-VAZUQEZ M A, KIRSCHEN D S. Wind generation as a reserve provider[J]. IET generation, transmission & distribution, 2015, 9(8): 779-787.
[13] 李少林, 秦世耀, 王瑞明, 等. 一种双馈风电机组一次调频协调控制策略研究[J] .太阳能学报, 2020, 41(2): 101-109.
LI S L, QIN S Y, WANG R M, et al.A collaborative control of primary frequency regulation for DFIG-WT[J]. Acta energiae solaris sinica, 2020, 41(2): 101-109.
[14] 欧阳金鑫, 袁毅峰, 李梦阳, 等. 考虑风电减载调频的高比例风电电力系统优化调度方法[J]. 电网技术, 2021, 45(6): 2192-2201.
OUYANG J X, YUAN Y F, LI M Y, et al.Optimal dispatching method of high-proportion wind power systems considering wind power reserve for frequency adjustment[J]. Power system technology, 2021, 45(6): 2192-2201.
[15] 邓婷婷, 娄素华, 田旭, 等. 计及需求响应与火电深度调峰的含风电系统优化调度[J]. 电力系统自动化, 2019, 43(15): 34-41.
DENG T T, LOU S H, TIAN X, et al.Optimal dispatch of power system integrated with wind power considering demand response and deep peak regulation of thermal power units[J]. Automation of electric power systems, 2019, 43(15): 34-41.
[16] LI S H.Power flow modeling to doubly-fed induction generators (DFIGs) under power regulation[J]. IEEE transactions on power systems, 2013, 28(3): 3292-3301.

基金

国家自然科学基金(51877061)

PDF(1925 KB)

Accesses

Citation

Detail

段落导航
相关文章

/