在“双碳”背景下,为实现补偿风电预测误差和平抑波动,提出一种计及补偿风电预测误差和平抑波动的控制策略。首先,制定比国家规定更严格的混合储能综合目标域,将目标域分为内、外两部分,采用自适应噪声集合经验模态分解(ICEEMDAN)和逼近理想解排序法(TOPSIS)求得超级电容作用域和蓄电池作用域,超级电容承担变化率较大的部分,蓄电池承担平滑部分。然后,将作用于目标域的混合储能电池组分为4组,根据充/放电参考功率进行状态切换。最后,以新疆某风电场为例进行仿真分析,综合对比多种分解方法和储能配置方法,证明所提策略的有效性。
Abstract
Under the background of ‘dual carbon’, based on the comprehensive target domain of wind power forecasting error and smoothing fluctuation, a control strategy is proposed to compensate both the prediction error and smoothing fluctuation of wind power. Firstly, the allowable range of prediction error and wind power fluctuation is determined more strictly than that of the national standard, and the comprehensive target area is established. The target domain is divided into internal and external parts, using improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and technique for order preference by similarity to an ideal solution (TOPSIS)to calculate the scope of super capacitor and battery, which bear the part with the larger change rate and the smooth part respectively. And then, the hybrid energy storage batteries acting on the target domain are divided into four groups, and the states are switched according to the charge/discharge power. Finally, a wind farm in Xinjiang was taken as an example for simulation analysis, and a comprehensive comparison of various decomposition methods and energy storage configuration methods was made to prove the effectiveness of the proposed strategy.
关键词
风电 /
预测误差 /
功率波动 /
综合目标域 /
自适应噪声集合经验模态分解 /
逼近理想解排序法 /
功率分配 /
分组电池
Key words
wind power /
prediction error /
power fluctuation /
comprehensive target area /
ICEEMDAN /
TOPSIS /
power distribution /
grouping batteries
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YE J H, XIE L R, MA L, et al.A novel hybrid model based on Laguerre polynomial and multi-objective Runge-Kutta algorithm for wind power forecasting[J]. International journal of electrical power & energy systems, 2023, 146:108726.
[2] MA L, XIE L R, YE J H, et al.A wind power smoothing strategy based on two-layer model algorithm control[J]. Journal of energy storage, 2023, 60: 106617.
[3] 王森, 蔺红. 基于变系数ES的混合储能平抑风电波动控制策略[J]. 太阳能学报, 2019, 40(11): 3204-3212.
WANG S, LIN H.Hybrid energy storage based on variable coefficient ES to smooth wind power fluctuation control strategy[J]. Acta energiae solaris sinica, 2019, 40(11): 3204-3212.
[4] 马伟, 乔颖, 谢丽蓉, 等. 考虑气象特征波动划分阈值的双目标短期风功率预测[J]. 高电压技术, 2022, 48(10): 4154-4162.
MA W, QIAO Y, XIE L R, et al.Biobjective short-term wind power prediction considering the threshold of meteorological characteristic fluctuation[J]. High voltage engineering, 2022, 48(10): 4154-4162.
[5] 茆美琴, 洪嘉玲, 张榴晨. 考虑光伏出力预测误差修正的储能优化配置方法[J]. 太阳能学报, 2021, 42(2): 410-416.
MAO M Q, HONG J L, ZHANG L C.Energy storage optimization allocation method considering PV output forecast error correction[J]. Acta energiae solaris sinica, 2021, 42(2): 410-416.
[6] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3): 1016-1029.
MA L, XIE L R, YE L, et al.Wind power fluctuation suppression strategy based on hybrid energy storage bilevel programming model[J]. Power system technology, 2022, 46(3): 1016-1029.
[7] 陈泽西, 孙玉树, 张妍, 等. 考虑风电波动率的储能系统优化配置策略[J]. 湖南大学学报(自然科学版), 2020, 47(8): 60-68.
CHEN Z X, SUN Y S, ZHANG Y, et al.Optimal allocation strategy of energy storage system considering wind power volatility[J]. Journal of Hunan University(natural sciences), 2020, 47(8): 60-68.
[8] 谢丽蓉, 郑浩, 魏成伟, 等. 兼顾补偿预测误差和平抑波动的光伏混合储能协调控制策略[J]. 电力系统自动化, 2021, 45(3): 130-138.
XIE L R, ZHEN H, WEI C W, et al.A coordinated control strategy for PV hybrid energy storage with consideration of compensating prediction error and smoothing fluctuation[J]. Automation of electric power systems, 2021, 45(3): 130-138.
[9] 陈洁, 詹仲强. 高阶统计量与小波包分解在风氢混合储能系统中的应用[J]. 太阳能学报, 2018, 39(11): 3286-3294.
CHEN J, ZHAN Z Q.Application of high order statistics and wavelet packet decomposition in wind-hydrogen hybrid energy storage system[J]. Acta energiae solaris sinica, 2018, 39(11): 3286-3294.
[10] 李鑫, 王娟, 邱亚, 等. 基于VMD的混合储能容量优化配置[J]. 太阳能学报, 2022, 43(2): 88-96.
LI X, WANG J, QIU Y, et al.Hybrid energy storage capacity optimization based on VMD[J]. Acta energiae solaris sinica, 2022, 43(2): 88-96.
[11] 郭玲娟, 魏斌, 韩肖清, 等. 基于集合经验模态分解的交直流混合微电网混合储能容量优化配置[J]. 高电压技术, 2020, 46(2): 527-537.
GUO L J, WEI B, HAN X Q, et al.Optimal configuration of hybrid energy storage capacity in AC-DC hybrid microgrid based on ensemble empirical Mode decomposition[J]. High voltage engineering, 2020, 46(2): 527-537.
[12] 国家能源局. 关于印发《发电厂并网运行管理规定》的通知(电监市场〔2006〕42号)[EB/OL].http://zfxxgk.nea.gov.cn/auto79/201306/t20130628_1618.htm.
National Energy Administration.Notice on Issuing the‘Regulations on the Management of Grid Connected Operation of Power Plants’(Electricity Regulatory Market[2006] No.42)[EB/OL].http://zfxxgk.nea.gov.cn/auto79/201306/t20130628_1618.htm.
[13] 石涛, 张斌, 晁勤, 等. 兼顾平抑风电波动和补偿预测误差的混合储能容量经济配比与优化控制[J]. 电网技术, 2016, 46(3): 477-483.
SHI T, ZHANG B, CHAO Q, et al.Economic storage ratio and optimal control of hybrid energy capacity combining stabilized wind power fluctuations with compensated predictive errors[J]. Power system technology, 2016, 46(3): 477-483.
[14] 刘震宇, 陈惠明, 陆蔚, 等. 基于改进经验模态分解的雷达生命信号检测[J]. 仪器仪表学报, 2018, 39(12):171-178.
LIU Z Y, CHEN H M, LU W, et al.Radar life signal detection based on ICEEMDAN[J]. Chinese journal of scientific instrument, 2018, 39(12): 171-178.
[15] COSTA M,GOLDBERGER A L,PENG C K.Multiscale entropy analysis of complex physiologic time series[J].Physical review letters, 2002, 92: 068102
基金
国家自然科学基金(62163034); 新疆维吾尔自治区重大专项(2022A01001)