一种具有自适应电压补偿和恢复功能的微电网功率均分策略

彭志豪, 黄海益, 杨苓

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 61-70.

PDF(2712 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2712 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 61-70. DOI: 10.19912/j.0254-0096.tynxb.2022-0471

一种具有自适应电压补偿和恢复功能的微电网功率均分策略

  • 彭志豪, 黄海益, 杨苓
作者信息 +

A MICROGRID POWER SHARING STRATEGY WITH ADAPTIVE VOLTAGE COMPENSATION AND RESTORATION

  • Peng Zhihao, Huang Haiyi, Yang Ling
Author information +
文章历史 +

摘要

在高/低电压等级微电网中,线路参数的差异导致逆变器输出功率无法精确均分且系统间出现环流,传统的下垂控制未能较好解决此问题。为此,该文提出一种具有自适应电压补偿和恢复功能的微电网功率均分控制策略。首先,通过引入虚拟阻抗,使高/低电压等级下逆变器输出总阻抗呈感性/阻性;其次,在改进下垂控制中提出自适应电压补偿方法,消除系统输出电压间的偏差,实现无功/有功功率的精确均分,但存在系统总输出功率下降的问题;然后,在上述基础上进一步提出电压恢复方法,在不影响功率均分精度的前提下,使系统总输出功率恢复至初始状态;最后,通过实验验证所提策略的有效性。

Abstract

In high/low voltage level microgrids, the difference in line parameters leads to the fact that the output power of inverter cannot be accurately shared and a circulating current occurs between the systems. The traditional droop control cannot solve this problem well. To this end, a microgrid power sharing control strategy with adaptive voltage compensation and restoration is proposed in this paper. Firstly, by introducing virtual impedance, the total output impedance of inverter at high/low voltage levels is inductive/resistive. Secondly, an adaptive voltage compensation method is proposed in the improved droop control, which eliminates the deviation between the output voltages of system and realizes the accurate equalization of reactive power/active power, but there is a problem that the total output power of system decreases. Then, on the basis of the above, the voltage recovery method is proposed to restore the total output power of system to the initial state without affecting the power sharing accuracy. Finally, the effectiveness of the proposed strategy is verified by experiments.

关键词

微电网 / 逆变器并联系统 / 功率分配 / 自适应电压补偿和恢复

Key words

microgrid / parallel inverter system / power allocation / adaptive voltage compensation and restoration

引用本文

导出引用
彭志豪, 黄海益, 杨苓. 一种具有自适应电压补偿和恢复功能的微电网功率均分策略[J]. 太阳能学报. 2023, 44(7): 61-70 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0471
Peng Zhihao, Huang Haiyi, Yang Ling. A MICROGRID POWER SHARING STRATEGY WITH ADAPTIVE VOLTAGE COMPENSATION AND RESTORATION[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 61-70 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0471
中图分类号: TM464   

参考文献

[1] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046.
HAN X Q, LI T J, ZHANG D X, et al.New issues and key technologies of new power system planning under double carbon goal[J]. High voltage engineering, 2021, 47(9): 3036-3046.
[2] 盛四清, 樊茂森, 张文朝, 等. 高新能源占比系统的低频减载优化方法[J]. 太阳能学报, 2021, 42(2): 365-369.
SHENG S Q, FAN M S, ZHANG W C, et al.Optimization method of under frequency load shedding for high new energy proportion system[J]. Acta energiae solaris sinica, 2021, 42(2): 365-369.
[3] FANG T, SHEN S, JIN Y, et al.Robustness investigation of multi-inverter paralleled grid-connected system with LCL-Filter based on the grid-impedance allocation mechanism[J]. IEEE transactions on power electronics, 2021, 36(12): 14508-14524.
[4] 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84,344.
ZHU S S, WANG F, GUO H, et al.Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344.
[5] GUO F, WEN C, MAO J, et al.Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids[J]. IEEE transactions on industrial electronics, 2015, 62(7): 4355-4364.
[6] WU T, LIU Z, LIU J, et al.A unified virtual power decoupling method for droop-controlled parallel inverters in microgrids[J]. IEEE transactions on power electronics, 2016, 31(8): 5587-5603.
[7] LASHEEN A, AMMAR M E, ZEINELDIN H H, et al.Assessing the impact of reactive power droop on inverter based microgrid stability[J]. IEEE transactions on energy conversion, 2021, 36(3): 2380-2392.
[8] 颜丽, 米阳, 孙威, 等. 基于改进下垂控制的孤岛交流微电网无功分配研究[J]. 太阳能学报, 2021, 42(8): 7-15.
YAN L, MI Y, SUN W, et al.Reactive power distribution control strategy in islanded AC microgrid based on improved droop control[J]. Acta energiae solaris sinica, 2021, 42(8): 7-15.
[9] 耿英明, 侯梅毅, 朱国防, 等. 基于虚拟阻抗的微电网有功均分阻性下垂控制策略[J]. 电力自动化设备, 2020, 40(10): 132-138.
GENG Y M, HOU M Y, ZHU G F, et al.Resistive droop control strategy of active power distribution for microgrid based on virtual impedance[J]. Electric power automation equipment, 2020, 40(10): 132-138.
[10] TANG M, LIU B, ZHOU Z, et al.Design and convergence analysis of an improved droop controller with adaptive virtual impedance[J]. IEEE access, 2021, 9: 128809-128816.
[11] 王二永, 王帅. 自适应下垂系数的低压微电网功率控制策略[J]. 电力系统保护与控制, 2019, 47(23): 52-56.
WANG E Y, WANG S.Power control strategy of low voltage microgrid based on adaptive droop coefficient[J]. Power system protection and control, 2019, 47(23): 52-56.
[12] LIU S, SU P, ZHANG L.A virtual negative inductor stabilizing strategy for DC microgrid with constant power loads[J]. IEEE access, 2018, 6: 59728-59741.
[13] WAI R J, ZHANG Q Q, WANG Y.A novel voltage stabilization and power sharing control method based on virtual complex impedance for an off-grid microgrid[J]. IEEE transactions on power electronics, 2019, 34(2): 1863-1880.
[14] PRABHAKARAN P, GOYAL Y, AGARWAL V.Novel nonlinear droop control techniques to overcome the load sharing and voltage regulation issues in DC microgrid[J]. IEEE transactions on power electronics, 2018, 33(5): 4477-4487.
[15] ZHANG M, SONG B, WANG J.Circulating current control strategy based on equivalent feeder for parallel inverters in islanded microgrid[J]. IEEE transactions on power systems, 2019, 34(1): 595-605.
[16] 陈晓祺, 贾宏杰, 陈硕翼, 等. 基于线路观测器的孤岛运行微电网改进下垂控制策略[J]. 高电压技术, 2016, 42(7): 2174-2183.
CHEN X Q, JIA H J, CHEN S Y, et al.Improved droop control strategy based on line impedance observer in islanded microgrid[J]. High voltage engineering, 2016, 42(7): 2174-2183.
[17] 姜恩宇, 赵吉康, 米阳, 等. 基于模糊自适应虚拟阻抗的微电网无功功率均分控制策略[J]. 南方电网技术, 2019, 13(5): 37-43.
JIANG E Y, ZHAO J K, MI Y, et al.Control strategy of reactive power sharing of microgrid based on fuzzy adaptive virtual impedance[J]. Southern power system technology, 2019, 13(5): 37-43.
[18] 米阳, 蔡杭谊, 宋元元, 等. 基于同步补偿的孤岛微电网无功均分研究[J]. 电工技术学报, 2019, 34(9): 1934-1943.
MI Y, CAI H Y, SONG Y Y, et al.Study on reactive power sharing of island microgrid based on synchronous compensation[J]. Transactions of China Electrotechnical Society, 2019, 34(9): 1934-1943.
[19] VU T V, PARAN S, DIAZ F, et al.An alternative distributed control architecture for improvement in the transient response of DC microgrids[J]. IEEE transactions on industrial electronics, 2017, 64(1): 574-584.
[20] 陈杰, 刘名凹, 陈新, 等. 基于下垂控制的逆变器无线并联与环流抑制技术[J]. 电工技术报, 2018, 33(7): 1450-1460.
CHEN J, LIU M A, CHEN X, et al.Wireless parallel and circulation current reduction of droop-controlled inverters[J]. Transactions of China Electrotechnical Society, 2018, 33(7): 1450-1460.
[21] 张庆海. 光伏分布式发电中多逆变器并联技术研究与实现[D]. 长沙: 湖南大学, 2013.
ZHANG Q H.Research and implementation of parallel inverters in photovoltaic generation system[D]. Changsha: Hunan University, 2013.
[22] 李维波, 徐聪, 许智豪, 等. 基于自适应虚拟阻抗的舰用逆变器并联策略[J]. 高电压技术, 2019, 45(8): 2538-2544.
LI W B, XU C, XU Z H, et al.Inverter parallel control strategy based on variable virtual impedance[J]. High voltage engineering, 2019, 45(8): 2538-2544.
[23] CHEN J, YUE D, DOU C, et al.A virtual complex impedance based P-V droop method for parallel-connected inverters in low-voltage AC microgrids[J]. IEEE transactions on industrial informatics, 2021, 17(3): 1763-1773.
[24] 方大千, 方成. 实用输配电速查速算手册[M]. 北京: 化学工业出版社, 2013.
FANG D Q, FANG C.Practical quick reference and calculation manual for power transmission and distribution[M]. Beijing: Chemical Industry Press, 2013.
[25] 王成山, 肖朝霞, 王守相. 微网中分布式电源逆变器的多环反馈控制策略[J]. 电工技术学报, 2009, 24(2): 100-107.
WANG C S, XIAO Z X, WANG S X.Multiple feedback loop control scheme for inverters of the micro source in microgrids[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 100-107.
[26] 余辉. 三相交流级联系统稳定性判据及解决方案研究[D]. 武汉: 华中科技大学, 2016.
YU H.Research on cascaded three-phase AC power system: stability critetion and solution[D]. Wuhan: Huazhong University of Science and Technology, 2016.
[27] 陈理. 分布式发电装置控制系统的设计和研究[D]. 杭州: 浙江大学, 2006.
CHEN L.Researching on designing the control system of distributed generation units[D]. Hangzhou: Zhejiang University, 2006.
[28] 吕志鹏, 罗安. 不同容量微源逆变器并联功率鲁棒控制[J]. 中国电机工程学报, 2012, 32(12): 35-42.
LYU Z P, LUO A.Robust power control of paralleled micro-source inverters with different power ratings[J]. Proceedings of the CSEE, 2012, 32(12): 35-42.

基金

国家自然科学基金(52107185); 广东省基础与应用基础研究基金(2019A1515110768)

PDF(2712 KB)

Accesses

Citation

Detail

段落导航
相关文章

/