为实现海上风电机组支撑结构的轻量化设计,提出基于拓扑优化的海上风电机组三脚架结构设计方法。首先,以结构柔顺度最小化为目标设置体积比约束,基于变密度法实现三脚架结构的概念设计;然后,以拓扑优化结果为依据,通过删除参考结构的水平连杆及增加斜支撑与中心主筒厚度的方式实现三脚架结构的重构;最后,从固有频率、极限强度及疲劳强度3个方面验证优化结构的可靠性及有效性。结果表明:与参考结构相比,优化结构在满足静动态和疲劳设计要求的同时实现了结构大幅减重,充分证明了所提拓扑优化方法的可行性及优越性。
Abstract
To achieve the lightweight design of the offshore wind turbine (OWT) supporting structures, a topology optimization method for the OWT tripod structure is proposed. Firstly, the optimization problem with the minimum compliance subject to volume fraction is established. The concept design of the tripod structure is performed based on variable density method. Then based on topology optimization results, the tripod structure is reconstructed by deleting the horizontal connecting rod of the reference structure and increasing the thickness of inclined support and central main barrel. Finally, the reliability and effectiveness of the optimized structure are verified from three aspects including the natural frequency, ultimate strength and fatigue strength. The results show that compared with the reference structure, the optimized structure can greatly reduce the total weight of the whole structure while meeting the static, dynamic and fatigue design requirements, which fully proves the feasibility and superiority of the proposed topology optimization method.
关键词
海上风电机组 /
结构设计 /
疲劳损伤 /
三脚架结构 /
极限强度
Key words
offshore wind turbines /
structural design /
fatigue damage /
tripod structures /
ultimate strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering, 1988, 71(2): 197-224.
[2] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural optimization, 1989, 1(4): 193-202.
[3] XIE Y M, STEVEN G P.A simple evolutionary procedure for structural optimization[J]. Computers & structures, 1993, 49(5): 885-896.
[4] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法[M].北京: 科学出版社, 2013.
SUI Y K, YE H L.Continuum topology optimization methods ICM[M]. Beijing: Science Press, 2013.
[5] WANG M Y, WANG X M, GUO D M.A level set method for structural topology optimization[J]. Computer methods in applied mechanics and engineering, 2003, 192(1-2): 227-246.
[6] GUO X, ZHANG W S, ZHONG W L.Doing topology optimization explicitly and geometrically:a new moving morphable components based framework[J]. Journal of applied mechanics, 2014, 81(8): 081009.
[7] LUO Z, YANG J Z, CHEN L P.A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures[J]. Aerospace science and technology, 2006, 10(5): 364-373.
[8] ZHU J H, ZHANG W H,XIA L.Topology optimization in aircraft and aerospace structures design[J]. Archives of computational methods in engineering, 2016, 23: 595-622.
[9] SEIFI H, JAVAN A R, XU S Q, et al.Design optimization and additive manufacturing of nodes in gridshell structures[J]. Engineering structures, 2018, 160: 161-170.
[10] WANG X J, XU S Q, ZHOU S W, et al.Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review[J]. Biomaterials, 2016, 83: 127-141.
[11] GENTILS T, WANG L, KOLIOS A.Integrated structural optimization of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied energy, 2017, 199: 187-204.
[12] MOTLAGH A A, SHABAKHTY N, KAVEH A.Design optimization of jacket offshore platform considering fatigue damage using Genetic Algorithm[J]. Ocean engineering, 2021, 227: 108869.
[13] ZHANG P Y, LI J Y, GAN Y, et al.Bearing capacity and load transfer of brace topological in offshore wind turbine jacket structure[J]. Ocean engineering, 2020, 199: 107037.
[14] TIAN X J, WANG Q Y, LIU G J, et al.Topology optimization design for offshore platform jacket structure[J]. Applied ocean research, 2019, 84: 38-50.
[15] TIAN X J, SUN X Y, LIU G J,et al.Optimization design of the jacket support structure for offshore wind turbine using topology optimization method[J]. Ocean engineering, 2022, 243: 110084.
[16] LEE Y S, GONZALEZ J A, LEE J H, et al.Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable energy, 2016, 85: 1214-1225.
[17] YANG H Z, ZHU Y, LU Q J, et al.Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines[J]. Renewable energy, 2015, 78: 16-25.
[18] YETER B, GARBATOV Y, SOARES C G.Fatigue damage assessment of fixed offshore wind turbine tripod support structures[J]. Engineering structures, 2015, 101: 518-528.
[19] MA H W, YANG J, CHEN L Z.Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation[J]. Applied ocean research, 2018, 73: 179-189.
[20] LUCZAK M M, TELEGA J, ZAGATO N, et al.On the damage detection of a laboratory scale model of a tripod supporting structure by vibration-based methods[J]. Marine structures, 2019, 64: 146-160.
[21] IEC 61400-3:2009, Wind turbines-part3: design requirements for offshore wind turbines[S].
[22] SIGMUND O, PETERSSON J.Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards mesh-dependencies and local minima[J].Structural optimization, 1998, 16(1): 68-75.
[23] ZHOU M, SHYY Y K, THOMAS H L.Checkerboard and minimum member size control in topology optimization[J].Structural and multidisciplinary optimization, 2001, 21(2): 152-158.
[24] FLEURY C, BRAIBANT V.Structural optimization: a new dual method using mixed variables[J]. International journal for numerical methods in engineering, 1986, 23(3): 409-428.
[25] THOMAS H, ZHOU M, SCHRAMM U.Issues of commercial optimization software development[J]. Structural and multidisciplinary optimization, 2002, 23: 97-110.
[26] BENDSØE M P, SIGMUND O. Topology optimization:theory, methods and applications[M]. Berlin: Springer, 1993.
[27] 林毅峰. 海上风电机组支撑结构与地基基础一体化分析设计[M]. 北京: 机械工业出版社, 2020.
LIN Y F.Integrated analysis and design for support structure and foundation of offshore wind turbine[M]. Beijing: China Machine Press, 2020.
[28] DNVGL-RP-C203-2019, Fatigue design of offshore steel structures[S].
基金
国家重点研发计划项目(2022YFB4201302); 广东省基础与应用基础研究基金海上风电联合基金(2022A1515240057); 华能集团海上风电与智慧能源系统科技专项(HNKJ20-H88-01)