考虑齿轮的时变啮合刚度、啮合相位以及轴、壳体的柔性等因素,同时计入永磁体的磁饱和特性、电磁力波以及空间谐波等非线性因素,该文构建了8 MW风力发电机一体化齿轮-发电机系统的机电-刚柔耦合动力学模型,并通过实验验证了建模方法的准确性,分析了永磁发电机电磁激励对齿轮-发电机系统机电耦合动态特性的影响,同时采用升速分析法,结合模态振型矢量分布,讨论从切入风速至额定风速运行过程中的潜在共振转速和危险构件。研究发现:对于一体化齿轮-发电机系统而言,电磁力是系统主要的内激励,对齿轮系统振动特性影响显著。同时,机械系统与电气系统存在强耦合特性,机械系统振动信号中存在电磁激励频率,发电机电磁转矩与电流信号中出现了齿轮系统的各级啮合频率。系统共振的产生条件为激励频率接近某阶固有频率,同时激励源和该阶模态下的主要振动构件处于传动链中的同一位置。
Abstract
Considering the time-varying meshing stiffness and meshing phase, flexible shaft and housing, as well as the nonlinear factors of generator such as magnetic saturation characteristics, electromagnetic waves and space harmonics, the rigid-flexible electromechanical coupling dynamics model for the integrated gear-generator system of 8 MW wind turbine is established. The modeling method is verified by experiment. The influence of electromagnetic excitation on the dynamic characteristics of the integrated system is studied. Speed-sweep analysis method, combined with modal vector distribution principle, are proposed to predict the potential resonance speed and search the dangerous components, during the operation process from start-up wind speed to rated wind speed. It is demonstrated that electromagnetic force is the main internal excitation for the integrated gear-generator system, which has a significant influence on the system vibration characteristics. There is a strong coupling effect between the mechanical system and the electrical system. Gear systems are affected by electromagnetic excitation, and the excitation frequency of the gear system also appears in the generator current and electromagnetic torque signal. The system resonance only happens, when the excitation frequency is close to a certain order natural frequency, and the excitation source and main vibration component in this order mode are in the same position as well.
关键词
风力发电机 /
机电耦合 /
动力学响应 /
刚柔耦合
Key words
wind turbines /
electromechanical coupling /
dynamic response /
rigid-flexible coupling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HEEGE A.Computation of dynamic loads in wind turbine power trains[J]. Dewi magazin, 2003, 23: 59-64.
[2] LI R F, YANG C Y, LIN T J, et al.Finite element simulation of the dynamical behavior of a speed-increase gearbox[J]. Journal of materials processing technology,2004, 150(1-2): 170-174.
[3] 徐向阳, 朱才朝, 刘怀举. 柔性销轴式风电齿轮箱行星传动均载研究[J]. 机械工程学报, 2014, 50(11): 43-49.
XU X Y, ZHU C C, LIU H J.Load sharing research of planetary gear transmission system of wind turbine gearbox with flexible pins[J]. Journal of mechanical engineering, 2014, 50(11): 43-49.
[4] CHOY F K, TU Y K, ZAKRAJSEK J J, et al.Dynamics of multistage gear transmission with effects of gearbox vibrations[R]. CSME Mechanical Engineering Forum,Toronto, Canada, 1990: 19900018744.
[5] CHOY F K, RUAN Y F, TU R K, et al.Modal analysis of multistage gear systems coupled with gearbox vibrations[J]. Journal of mechanical design, 1992, 114(3): 486-497.
[6] 高维金, 王亮, 刘永光. 箱式动力结构的振动传递特性分析[J]. 北京航空航天大学学报, 2015, 41(3): 509-516.
GAO W J, WANG L, LIU Y G.Analysis on vibration transmission characteristics of box-like power structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 509-516.
[7] ABOUSLEIMAN V, VELEX P.A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets[J]. Mechanism and machine theory, 2006, 41(6): 725-748.
[8] AMBARISHA V K, CHEN S E, VIJAYAKAR S, et al.Time-domain dynamic analysis of helical gears with reduced housing model[J]. SAE international journal of aerospace, 2013, 6(1): 17-22.
[9] 魏静, 张爱强, 秦大同, 等. 考虑结构柔性的行星轮系耦合振动特性研究[J]. 机械工程学报, 2017, 53(1):1-12.
WEI J, ZHANG A Q, QIN D T, et al.Coupling vibration analysis for planetary gear system considering flexible structure[J]. Journal of mechanical engineering, 2017, 53(1): 1-12.
[10] 陈星. 车用机电复合传动系统机电耦合非线性振动研究[D]. 北京: 北京理工大学, 2015.
CHEN X.Study on electromechanical coupling nonlinear vibration of electromechanical transmission system for HEV[D]. Beijing: Beijing Institute of Technology, 2015.
[11] XIE Y, XIA Y, LI Z W, et al.Analysis of modal and vibration reduction of an interior permanent magnet synchronous motor[J]. Energies, 2019, 12(18): 3427.
[12] BO Y, LI S, HU G.Research on electromagnetic force wave analysis and vibration characteristics of permanent magnet synchronous motor based on finite element simulation[C]//2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI), IEEE, Chongqing, China, 2020.
[13] SUN Z, XU Y F, ZHAO X L.Analysis and simulation research on radial electromagnetic force wave of permanent magnet synchronous motor[J]. Journal of physics: conference series, 2021, 1754(1): 012075.
[14] CHAI F, LI Y, PEI Y L, et al.Analysis of radial vibration caused by magnetic force and torque pulsation in interior permanent magnet synchronous motors considering air-gap deformations[J]. IEEE transactions on industrial electronics, 2019, 66(9): 6703-6714.
[15] YI Y Y, QIN D T, LIU C Z.Investigation of electromechanical coupling vibration characteristics of an electric drive multistage gear system[J]. Mechanism and machine theory, 2018, 121: 446-459.
[16] 易园园. 变速变载工况下采煤机截割传动系统机电耦合动力学研究[D]. 重庆: 重庆大学, 2018.
YI Y Y.Electromechanical coupling dynamics of cutting transmission system of coal-mining machine under variable speed and variable load conditions[D]. Chongqing: Chongqing University, 2018.
[17] LIU C Z, QIN D T, LIM T C, et al.Dynamic characteristics of the herringbone planetary gear set during the variable speed process[J]. Journal of sound and vibration, 2014, 333(24): 6498-6515.
[18] 刘长钊. 非稳态工况下采煤机截割传动系统机电动态特性研究[D]. 重庆: 重庆大学, 2016
LIU C Z.Investigation on electromechanical characteristics of the cutting transmission system of the long-wall shearer under non-stationary conditions[D]. Chongqing: Chongqing University, 2016
[19] BAI W Y, QIN D T, WANG Y W, et al.Dynamic characteristics of motor-gear system under load saltations and voltage transients[J]. Mechanical systems and signal processing, 2018, 100: 1-16
[20] 于蓬, 王珮琪, 章桐, 等. 电动车动力传动系机电耦合扭转振动分析与控制[J]. 振动与冲击, 2017, 36(17): 10-15, 34.
YU P, WANG P Q, ZHANG T, et al.Electro-mechanical coupled torsion vibration analysis and control of electric vehicle drivelines[J]. Journal of vibration and shock, 2017, 36(17): 10-15, 34.
[21] CHEN R B, QIN D T, Yi Y Y, et al.Dynamic characteristics of electromechanical coupling of wind turbine drive system under multi-source excitation[J]. Wind energy, 2022, 25(3): 391-418.
[22] SHU R Z, WEI J, TAN R L, et al.Investigation of dynamic and synchronization properties of a multi-motor driving system: theoretical analysis and experiment[J]. Mechanical systems and signal processing, 2021, 153:107496.
[23] 魏静, 周仁弘毅, 张爱强, 等. 复杂异型机匣高效高精度动力学建模及评价方法[J]. 航空动力学报, 2021, 36(7): 1520-1532.
WEI J, ZHOU R H Y, ZHANG A Q, et al. High-efficiency and accurate dynamical modeling and evaluation method for complex irregular casing[J]. Journal of aerospace power, 2021, 36(7): 1520-1532.
基金
国家重点研发计划(2018YFB2001601); 国家自然科学基金(51705042)