富镍镧镍合金催化二苄基甲苯加氢性能研究

冯小阳, 蒋利军, 李志念, 武媛方, 叶建华, 王琦

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 382-388.

PDF(2218 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2218 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 382-388. DOI: 10.19912/j.0254-0096.tynxb.2022-0479

富镍镧镍合金催化二苄基甲苯加氢性能研究

  • 冯小阳1,2, 蒋利军1,3, 李志念1,2, 武媛方1,2, 叶建华1,3, 王琦1,2
作者信息 +

HYDROGENATION PERFORMANCE OF DIBENZYLTOLUENE CATALYZED BY Ni-RICH La-Ni ALLOYS

  • Feng Xiaoyang1,2, Jiang Lijun1,3, Li Zhinian1,2, Wu Yuanfang1,2, Ye Jianhua1,3, Wang Qi1,2
Author information +
文章历史 +

摘要

采用感应熔炼和球磨方法制备镧镍储氢合金,进一步通过酸处理法原位制备富镍镧镍储氢合金。研究不同条件下制备的镧镍储氢合金催化二苄基甲苯(DBT)加氢性能。在反应温度为280 ℃时,经过4 h后,富镍镧镍储氢合金催化二苄基甲苯的加氢量达到5.34%(质量分数),20 h后,其加氢量达到理论最大值。富镍镧镍储氢合金具备的高效催化二苄基甲苯加氢活性主要归因于镍的高效催化和镧镍储氢合金可逆吸放氢之间的相互促进作用。

Abstract

La-Ni alloys are prepared by induction melting and ball milling, and Ni-rich La-Ni alloys are further prepared in situ by an acid treatment method. The hydrogenation performance of dibenzyltoluene catalyzed by La-Ni alloys prepared with different conditions is studied. The hydrogenation amount of dibenzyltoluene catalyzed by Ni-rich La-Ni alloys reaches 5.34%(mass concentration) at 280 ℃ for 4 h, and finally reaches the theoretical maximum value after 20 h. The excellent catalytic hydrogenation activity of Ni-rich La-Ni alloys is mainly attributed to the mutual promotion between the efficient catalysis of Ni and the reversible hydrogen absorption and desorption ability of La-Ni alloys.

关键词

储氢 / 液态有机氢载体 / 二苄基甲苯 / 加氢 / 催化剂 / 镧镍合金

Key words

hydrogen storage / liquid organic hydrogen carrier / dibenzyltoluene / hydrogenation / catalysts / La-Ni alloys

引用本文

导出引用
冯小阳, 蒋利军, 李志念, 武媛方, 叶建华, 王琦. 富镍镧镍合金催化二苄基甲苯加氢性能研究[J]. 太阳能学报. 2022, 43(6): 382-388 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0479
Feng Xiaoyang, Jiang Lijun, Li Zhinian, Wu Yuanfang, Ye Jianhua, Wang Qi. HYDROGENATION PERFORMANCE OF DIBENZYLTOLUENE CATALYZED BY Ni-RICH La-Ni ALLOYS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 382-388 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0479
中图分类号: TB34   

参考文献

[1] HASSAN I A, RAMADAN H S, SALEH M A, et al.Hydrogen storage technologies for stationary and mobile applications: review, analysis and perspectives[J]. Renewable and sustainable energy reviews, 2021, 149: 111311.
[2] ANDERSSON J, GRÖNKVIST S. Large-scale storage of hydrogen[J]. International journal of hydrogen energy, 2019, 44(23): 11901-11919.
[3] EBERLE U, FELDERHOFF M, SCHUETH F.Chemical and physical solutions for hydrogen storage[J]. Angewandte chemie international edition, 2009, 48(36): 6608-6630.
[4] LANG C G, JIA Y, YAO X D.Recent advances in liquid-phase chemical hydrogen storage[J]. Energy storage materials, 2020, 26: 290-312.
[5] NASEEM M, USMAN M, LEE S.A parametric study of dehydrogenation of various Liquid Organic Hydrogen Carrier(LOHC) materials and its application to methanation process[J]. International journal of hydrogen energy, 2021, 46(5): 4100-4115.
[6] MODISHA P M, OUMA C N M, GARIDZIRAI R, et al. The prospect of hydrogen storage using liquid organic hydrogen carriers[J]. Energy & fuels, 2019, 33(4): 2778-2796.
[7] BRUCKNER N, OBESSER K, BOSMANN A, et al.Evaluation of industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems[J]. ChemSusChem, 2014, 7(1): 229-235.
[8] NIERMANN M, BECKENDORFF A, KALTSCHMITT M, et al.Liquid Organic Hydrogen Carrier (LOHC)-assessment based on chemical and economic properties[J]. International journal of hydrogen energy, 2019, 44(13): 6631-6654.
[9] AAKKO-SAKSA P T, VEHKAMAKI M, KEMELL M, et al. Hydrogen release from liquid organic hydrogen carriers catalysed by platinum on rutile-anatase structured titania[J]. Chemical communications, 2020, 56(11): 1657-1660.
[10] AUER F, BLAUMEISER D, BAUER T, et al.Boosting the activity of hydrogen release from liquid organic hydrogen carrier systems by sulfur-additives to Pt on alumina catalysts[J]. Catalysis science & technology, 2019, 9(13): 3537-3547.
[11] SHI L B, QI S T, QU J F, et al.Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier[J]. International journal of hydrogen energy, 2019, 44(11): 5345-5354.
[12] SISAKOVA K, PODROJKOVA N, ORINAKOVA R, et al.Novel catalysts for dibenzyltoluene as a potential liquid organic hydrogen carrier use—a mini-review[J]. Energy & fuels, 2021, 35(9): 7608-7623.
[13] SHI L B, ZHOU Y M, QI S T, et al.Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene[J]. ACS catalysis, 2020, 10(18): 10661-10671.
[14] DO G, PREUSTER P, ASLAM R, et al.Hydrogenation of the liquid organic hydrogen carrier compound dibenzyltoluene-reaction pathway determination by 1H NMR spectroscopy[J]. Reaction chemistry & engineering, 2016, 1(3): 313-320.
[15] WU Y, YU H E, GUO Y R, et al.Promoting hydrogen absorption of liquid organic hydrogen carriers by solid metal hydrides[J]. Journal of materials chemistry A, 2019, 7(28): 16677-16684.
[16] WU Y, YU H E, GUO Y R, et al.A rare earth hydride supported ruthenium catalyst for the hydrogenation of N-heterocycles: boosting the activity via a new hydrogen transfer path and controlling the stereoselectivity[J]. Chemical science, 2019, 10(45): 10459-10465.
[17] WU Y, GUO Y R, YU H E, et al.Nonstoichiometric yttrium hydride-promoted reversible hydrogen storage in a liquid organic hydrogen carrier[J]. CCS chemistry, 2021, 3(3): 974-984.
[18] CUEVAS F, LATROCHE M, HIRSCHER M, et al.Formation and structure of highly over-stoichiometric LaNi5+x (x~1) alloys obtained by manifold non-equilibrium methods[J]. Journal of alloys and compounds, 2001, 323: 4-7.
[19] 周增林, 宋月清, 崔舜, 等. 高倍率AB5型稀土贮氢合金的研究进展[J]. 稀有金属, 2004, 28(2): 408-413.
ZHOU Z L, SONG Y Q, CUI S, et al.Development of rare earth-based AB5-type hydrogen-storage alloys with high-rate dischargeability[J]. Chinese journal of rare metals, 2004, 28(2): 408-413.
[20] 宋佩维, 马玉韩. 化学计量比对AB5型贮氢合金相结构及电化学性能的影响[J]. 稀土, 2006, 27(4): 48-52.
SONG P W, MA Y H.Effect of stoichiometric ratio on structure and electrochemical properties of AB5-type hydrogen storage alloys[J]. Chinese rare metals, 2006, 27(4): 48-52.
[21] ISE T, MURATA T, HIROTA Y, et al.The surface structure and the electrochemical properties of hydrogen-absorbing alloys treated with an HCl aqueous solution[J]. Journal of alloys and compounds, 2000, 307(1-2): 324-332.
[22] YU H E, YANG X, JIANG X J, et al.LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole[J]. Nano energy, 2021, 80: 105476.
[23] LIU W, AGUEY-ZINSOU K F. Synthesis of highly dispersed nanosized LaNi5 on carbon: revisiting particle size effects on hydrogen storage properties[J]. International journal of hydrogen energy, 2016, 41(32): 14429-14436.
[24] DING Y H, DONG Y, ZHANG H S, et al.A highly adaptable Ni catalyst for liquid organic hydrogen carriers hydrogenation[J]. International journal of hydrogen energy, 2021, 46(53): 27026-27036.
[25] YE T N, LU Y, KOBAYASHI Y, et al.Efficient ammonia synthesis over phase-separated nickel-based intermetallic catalysts[J]. The journal of physical chemistry C, 2020, 124(52): 28589-28595.
[26] ZHONG D, OUYANG L Z, LIU J W, et al.Metallic Ni nanocatalyst in situ formed from LaNi5H5 toward efficient CO2 methanation[J]. International journal of hydrogen energy, 2019, 44(55): 29068-29074.

基金

有研科技集团有限公司科技创新基金(66222031); 广东省高水平创新研究院(2021B0909050001)

PDF(2218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/