严寒地区透光补热塔补热特性研究

黄凯良, 尹春亚, 冯国会, 郝禹翔, 江明志

太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 229-234.

PDF(1841 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1841 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (7) : 229-234. DOI: 10.19912/j.0254-0096.tynxb.2022-0480

严寒地区透光补热塔补热特性研究

  • 黄凯良, 尹春亚, 冯国会, 郝禹翔, 江明志
作者信息 +

STUDY ON HEATING CHARACTERISTICS OF PERVIOUS HEATING TOWER IN COLD REGION

  • Huang Kailiang, Yin Chunya, Feng Guohui, Hao Yuxiang, Jiang Mingzhi
Author information +
文章历史 +

摘要

提出一种改进的冷却塔逆用为地源热泵补热的方法,以严寒地区太阳能透光补热塔装置为研究对象,建立补热塔数学模型,通过数值模拟和实验测试研究补热塔装置透光结构面积、液-气比、空气流向对补热的影响。结果表明:在补热塔日运行周期内,双侧透光结构补热塔循环水出口温度平均升高0.5 ℃,换热量增加147.4 kW;综合分析换热效率和能效比可知,液-气比控制在0.58时换热效果最佳;逆流式补热塔比顺流式补热塔的吸热效率高13%,换热量高5.4 kW,进出口循环水温差增加0.6 ℃,故选用逆流式补热塔。

Abstract

An improved cooling tower retroactive heating method for ground source heat pump is proposed. Taking a solar transparent heat supplement tower unit as the research object in cold region, the mathematical models of the heat supplement tower is established. Through the numerical simulation and experimental test, the influences of transparent structure area, liquid-gas ratio and air flow direction on heat supplement are studied. The results show that in the daily operation cycle of the heating tower, the circulating water outlet temperature of double side transparent structure heating tower and the heat transfer rate of cooling tower increase by 0.5 ℃ and 147.4 kW, respectively. Comprehensive analysis of heat transfer efficiency and energy efficiency ratio shows that the best heat transfer effect is achieved if the liquid-gas ratio is controlled at 0.58. Generally, the countercurrent heating tower is improved by 13% on heat absorption efficiency and 5.4 kW on heat exchange than the downstream heating tower. Meanwhile, the temperature difference between inlet and outlet circulating water increases by 0.6 ℃. Therefore, the countercurrent heating tower is exactly selected.

关键词

冷却塔 / 太阳能 / 地源热泵 / 透光结构面积 / 液-气比 / 逆流式

Key words

cooling tower / solar energy / ground source heat pump / transparent structure area / liquid-gas ratio / counterflow

引用本文

导出引用
黄凯良, 尹春亚, 冯国会, 郝禹翔, 江明志. 严寒地区透光补热塔补热特性研究[J]. 太阳能学报. 2023, 44(7): 229-234 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0480
Huang Kailiang, Yin Chunya, Feng Guohui, Hao Yuxiang, Jiang Mingzhi. STUDY ON HEATING CHARACTERISTICS OF PERVIOUS HEATING TOWER IN COLD REGION[J]. Acta Energiae Solaris Sinica. 2023, 44(7): 229-234 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0480
中图分类号: TK513.5   

参考文献

[1] 赵耀, 饶政华, 伊若璇, 等. 夏热冬冷地区地源热泵长期运行对土壤热平衡的影响[J]. 可再生能源, 2013, 31(10): 74-79, 85.
ZHAO Y, RAO Z H, YI R X, et al.Effect of long-term operation of ground Source heat pump on soil heat balance in hot summer and cold winter region[J]. Renewable energy resources, 2013, 31(10): 74-79, 85.
[2] 李炳田, 游田, 王宝龙, 等. 复合补热地源热泵系统在北方地区的应用效果分析[J]. 建筑科学, 2012, 28(S2): 178-183.
LI B T, YOU T, WANG B L, et al.Analysis of application effect of compound heating ground source heat pump system in north China[J]. Building science, 2012, 28(S2): 178-183.
[3] HOU G Y, TAHERIAN H, LI L J.A predictive TRNSYS model for long-term operation of a hybrid ground source heat pump system with innovative horizontal buried pipe type[J]. Renewable energy, 2020, 151: 1046-1054.
[4] PU L, XU L L, QI D, et al.A novel tree-shaped ground heat exchanger for GSHPs in severely cold regions[J]. Applied thermal engineering, 2019, 146: 278-287.
[5] YOU T, YANG H X.Feasibility of ground source heat pump using spiral coil energy piles with seepage for hotels in cold regions[J]. Energy conversion and management, 2020, 205: 112466.
[6] WU W, WANG B L, YOU T, et al.A potential solution for thermal imbalance of ground source heat pump systems in cold regions: ground source absorption heat pump[J]. Renewable energy, 2013, 59: 39-48.
[7] YOU T, SHI W X, WANG B L, et al.A new ground-coupled heat pump system integrated with a multi-mode air-source heat compensator to eliminate thermal imbalance in cold regions[J]. Energy and buildings, 2015, 107(11): 103-112.
[8] YOU T, WANG B L, WU W, et al.A new solution for underground thermal imbalance of ground-coupled heat pump systems in cold regions: heat compensation unit with thermosyphon[J]. Applied thermal engineering, 2014, 64(1-2): 283-292.
[9] 郭海丰, 高祥涛, 肖雪榕. 补热塔复合式水源热泵系统研究[J]. 建筑节能, 2018, 46(1): 17-18, 22.
GUO H F, GAO X T, XIAO X R.Research on water source heat pump system with complementary tower[J]. Building energy conservation, 2018, 46(1): 17-18, 22.
[10] 宋延丽, 车帅, 王义松, 等. 地源热泵被动式补热塔实验分析[J]. 节能与环保, 2019(5): 48-49.
SONG Y L, CHE S, WANG Y S, et al.Experimental analysis of passive heating tower for ground source heat pump[J]. Energy conservation and environmental protection, 2019(5): 48-49.
[11] 徐政宇. 夏热冬冷地区开式热源塔热泵技术的供暖性能研究[D]. 重庆: 重庆大学, 2014.
XU Z Y.Research on heating performance of open heat tower heat pump technology in hot summer and cold winter area[D]. Chongqing: Chongqing University, 2014.
[12] 章熙民, 朱彤, 安青松, 等. 传热学[M]. 6版. 北京: 中国建筑工业出版社, 2014: 265-266.
ZHANG X M, ZHU T, AN Q S, et al.Heat transfer[M]. 6th edition. Beijing: China Architecture and Architecture Press, 2014: 265-266.
[13] 周翔. 开式热源塔冬季工况下传热性能的分析与研究[D]. 长沙: 湖南大学, 2019.
ZHOU X.Analysis and research on heat transfer performance of open heat source tower in winter[D]. Changsha: Hunan University, 2019.

基金

十三五“国家重点研发计划(2019YFE0100300); 辽宁省教育厅创新人才项目(2020389); 沈阳市科技计划(21108903)

PDF(1841 KB)

Accesses

Citation

Detail

段落导航
相关文章

/