针对传统风电机组故障识别方法精度难以保证且缺乏解释性的问题,提出一种以模糊规则分类系统为框架的风电机组故障识别与解释性分析方案。离线阶段通过启发式学习生成代表性故障规则,采用多种群量子进化算法实现故障规则寻优,提高对故障的识别精度;在线阶段定义近邻规则竞争策略,在此基础上提出基于故障规则后处理策略的故障解释性分析方案,实现潜在故障概率排序以及解释性的关键异常征兆表达。以兆瓦级风电机组常见的10种故障数据进行仿真分析。结果表明,所提方法可有效提高故障识别精度,同时提供可靠的故障解释性结果。
Abstract
Aiming at the problems that the accuracy of traditional wind turbine fault identification methods is difficult to guarantee and lacks interpretability, a scheme for wind turbine fault identification and explanatory analysis based on the fuzzy rule classification system is proposed. In the offline stage, representative fault rules are generated through heuristic learning, and the multi-population quantum evolutionary algorithm is used to optimize fault rules and improve the accuracy of fault identification. In the online stage, a competition strategy for neighbor rules is defined, and a post-processing strategy based on fault rules is constructed. On this basis, the fault interpretive analysis scheme realizes the ranking of potential fault probabilities and the explanatory expression of key abnormal symptoms. The simulation analysis is carried out with the data of 10 common faults of megawatt wind turbines. The results show that the proposed method can effectively improve the fault identification accuracy while provide reliable fault interpretability results.
关键词
风电机组 /
数据挖掘 /
故障诊断 /
模糊规则分类系统 /
故障概率 /
解释性分析
Key words
wind turbines /
data mining /
fault diagnosis /
fuzzy rule-based classification system /
fault probability /
interpretative analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 龙霞飞, 杨苹, 郭红霞, 等. 大型风力发电机组故障诊断方法综述[J]. 电网技术, 2017, 41(11): 3480-3491.
LONG X F, YANG P, GUO H X, et al.Review of fault diagnosis methods for large wind turbines[J]. Power system technology, 2017, 41(11): 3480-3491.
[2] 任建亭, 汤宝平, 雍彬,等. 基于深度变分自编码网络融合SCADA数据的风电齿轮箱故障预警[J]. 太阳能学报, 2021, 42(4): 403-408.
REN J T, TANG B P, YONG B, et al.Wind turbine gearbox fault warning based on depth variational autoencoders network fusion SCADA data[J]. Acta energiae solaris sinica, 2021, 42(4): 403-408.
[3] 王晓龙, 闫晓丽, 何玉灵. 变速工况下基于IEWT能量阶次谱的风电机组轴承故障诊断[J]. 太阳能学报, 2021, 42(4): 479-486.
WANG X L, YAN X L, HE Y L.Fault diagnosis of wind turbine bearing based on IEWT energy order spectrum under variable speed condition[J]. Acta energiae solaris sinica, 2021, 42(4): 479-486.
[4] 尹诗, 余忠源, 孟凯峰, 等. 基于非线性状态估计的风电机组变桨控制系统故障识别[J]. 中国电机工程学报, 2014, 34(S1): 160-165.
YIN S, YU Z Y, MENG K F, et al.Fault identification of pitch control system of wind turbine based on nonlinear state estimation[J]. Proceedings of the CSEE, 2014, 34(S1): 160-165.
[5] RUIZ M, MUJICA L E, ALFEREZLl S, et al.Wind turbine fault detection and classification by means of image texture analysis[J]. Mechanical systems and signal processing, 2018, 107: 149-167.
[6] PASHAZADE H V, SALMASI F R, ARAABI B N.Data driven sensor and actuator fault detection and isolation in wind turbine using classifier fusion[J]. Renewable energy, 2018, 116: 99-106.
[7] YANG W G, JIANG D X.Wind turbine fault diagnosis system based on a fuzzy expert system[C]//Proceedings of the 2015 International Power, Electronics and Materials Engineering Conference, Dalian, China, 2015: 530-535.
[8] ZHANG X, SUN L P, SUN H, et al.Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA[J]. Journal of wind engineering and industrial aerodynamics, 2016, 154: 21-33.
[9] PATERNAIN D, BUSTINCE H, PAGOLA M, et al.Capacities and overlap indexes with an application in fuzzy rule-based classification systems[J]. Fuzzy sets and systems, 2016, 305: 70-94.
[10] AYDOGAN E K, KARAOGLAN I, PARDALOS P M. hGA: hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems[J]. Applied soft computing, 2012, 12(2): 800-806.
[11] VAN D B J, KAYMAK U. Fuzzy classification using probability-based rule weighting[C]//2022 IEEE World Congress on Computational Intelligence, IEEE International Conference on Fuzzy Systems, Honolulu, HI, USA, 2002: 991-996.
[12] 张宇献, 钱小毅, 彭辉灯, 等. 基于等位基因的实数编码量子进化算法[J]. 仪器仪表学报, 2015, 36(9): 2129-2137.
ZHANG Y X, QIAN X Y, PENG H D, et al.Real-coded quantum evolutionary algorithm based on allele[J]. Chinese journal of scientific instrument, 2015, 36(9): 2129-2137.
[13] MALIK H, MISHRA S.Artificial neural network and empirical mode decomposition-based imbalance fault diagnosis of wind turbine using TurbSim, FAST and Simulink[J]. IET renewable power generation, 2017, 11(6): 889-902.
[14] ROBNIK, IKONJA M, KONONENK O I.Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine learning, 2003, 53(1): 23-69.
[15] SANZ J A, FERNANDEZ A, BUSTINCE H, et al.Improving the performance of fuzzy rule-based classification systems with interval valued fuzzy sets and genetic amplitude tuning[J]. Information sciences, 2010, 180(19): 3674-3685.
[16] DOMBI J, GERA Z.Rule based fuzzy classification using squashing functions[J]. Journal of intelligent and fuzzy systems, 2008, 19(1): 3-8.
基金
辽宁省教育厅基本科研项目(LJKQZ2021085; LJKQZ2021086); 辽宁省自然科学基金(2022-BS-222)