台风过境全过程水平风速变化中海气交换作用机制与影响因子研究

员亦雯, 柯世堂, 赵永发, 王硕, 陈明珠, 任贺贺

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 386-395.

PDF(5376 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(5376 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 386-395. DOI: 10.19912/j.0254-0096.tynxb.2022-0484

台风过境全过程水平风速变化中海气交换作用机制与影响因子研究

  • 员亦雯1,2, 柯世堂1,2, 赵永发1,2, 王硕1,2, 陈明珠1,2, 任贺贺1,2
作者信息 +

STUDY ON MECHANISM AND INFLUENCING FACTORS OF SEA-AIR EXCHANGE IN HORIZONTAL WIND SPEED VARIATION DURING WHOLE PROCESS OF TYPHOON TRANSIT

  • Yun Yiwen1,2, Ke Shitang1,2, Zhao Yongfa1,2, Wang Shuo1,2, Chen Mingzhu1,2, Ren Hehe1,2
Author information +
文章历史 +

摘要

为揭示海气交换作用对台风过境全过程水平风速的影响机理,基于MCT耦合平台二次开发,建立了大气WRF模式-海浪SWAN模式-海洋FVCOM模式的实时耦合模拟方法,同时和单一中尺度WRF模式预测结果比对,通过相关性分析确定了海气交换作用对台风水平风速影响的主要环境因素,进而揭示了海气交换作用机制,最终利用主成分分析法研究了台风不同阶段水平风速的海气交换作用综合环境因子影响系数。结果表明:海气交换作用对台风水平风速的影响中起主要作用的环境因子依次为:垂直切变、摩阻速度、海表温度、潜热通量与850 hPa垂直涡度;考虑海气交换作用时综合环境因子对水平风速的影响呈负反馈趋势,台风过境全过程下环境对风速的海气交换作用指标取值分别为:0.206(加速期)、-0.718(强风期)、-0.750(登陆期)。

Abstract

In order to reveal the influence mechanism of sea-air exchange on horizontal wind speed in the whole process of typhoon transit, a real-time coupling simulation method of atmospheric WRF model, wave SWAN model and marine FVCOM model is established based on the secondary development of MCT coupling platform. At the same time, it is compared with the prediction results of single mesoscale WRF model. Through correlation analysis, the main environmental factors affecting the horizontal wind speed of typhoon by sea-air exchange are determined, and then the mechanism of sea-air exchange is revealed. Finally, the comprehensive environmental factor's influence coefficient of sea-air exchange at different stages of typhoon is studied by principal component analysis. The results show that the main environmental factors in the influence of sea-air exchange on Typhoon horizontal wind speed are as follows: vertical shear, friction velocity, sea surface temperature, latent heat flux and 850 hPa vertical vorticity. Considering the sea-air exchange, the influence of comprehensive environmental factors on horizontal wind speed shows a negative feedback trend. The values of the sea-air exchange index of the environment on wind speed in the whole process of typhoon transit are 0.206 (acceleration period), -0.718 (strong wind period) and -0.750 (landing period).

关键词

海上风电 / 台风 / 海气交换作用 / W-S-F实时耦合平台 / 水平风速 / 影响因子

Key words

offshore wind powewr / typhoon / air-sea exchange / W-S-F real-time coupling platform / horizontal wind speed / influence factors

引用本文

导出引用
员亦雯, 柯世堂, 赵永发, 王硕, 陈明珠, 任贺贺. 台风过境全过程水平风速变化中海气交换作用机制与影响因子研究[J]. 太阳能学报. 2023, 44(8): 386-395 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0484
Yun Yiwen, Ke Shitang, Zhao Yongfa, Wang Shuo, Chen Mingzhu, Ren Hehe. STUDY ON MECHANISM AND INFLUENCING FACTORS OF SEA-AIR EXCHANGE IN HORIZONTAL WIND SPEED VARIATION DURING WHOLE PROCESS OF TYPHOON TRANSIT[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 386-395 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0484
中图分类号: TU312+.1    TK81   

参考文献

[1] 陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979.
CHEN L S, DING Y H.Introduction to typhoons in the Western Pacific [M]. Beijing: Science Press, 1979.
[2] VICKERY P J, WADHERA D, POWELL M D, et al.Ahurricane boundary layer and wind field model for use in engineering applications[J]. Journal of applied meteorology & climatology, 2009, 48(2): 381-405.
[3] 赵林, 杨绪南, 方根深, 等. 超强台风山竹近地层外围风速剖面演变特性现场实测[J]. 空气动力学学报, 2019, 37(1): 43-54.
ZHAO L, YANG X N, FANG G S, et al.Observation -based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut[J]. Acta aerodynamica sinica, 2019, 37(1): 43-54.
[4] TIAN X X, ZOU X L.Capturing size and intensity changes of hurricanes irma and maria(2017) from polar-orbiting satellite microwave radiometers[J]. Journal of the atmospheric sciences, 2018, 75(8): 2509-2522.
[5] LU Y X, TANG J P, WANG Y, et al.Validation of near-surface winds obtained by a hybrid WRF/calmet modeling system over a coastal island with complex terrain[J]. Journal of tropical meteorology, 2012, 18(3): 284.
[6] 王叶红, 赵玉春. 边界层参数化方案对“莫兰蒂”台风(1614)登陆阶段影响的数值模拟研究[J]. 大气科学, 2020, 44(5): 935-959.
WANG Y H, ZHAO Y C.Numerical investigation of the effects of boundary layer parameterization schemes on typhoon Meranti(1614) landing process[J]. Chinese journal of atmospheric sciences, 2020, 44(5): 935-959.
[7] TAKEMI T.The evolution and intensification of Cyclone Pam (2015) and resulting strong winds over the southern Pacific islands[J]. Journal of wind engineering and industrial aerodynamics, 2018, 182: 27-36.
[8] 王丽娟, 邓方俊, 史珩瑜, 等. 1909号台风“利奇马”影响期间浙江大风分布特征及成因分析[J]. 海洋预报, 2020, 37(6): 83-95.
WANG L J, DENG F J, SHI H Y, et al.Distribution characteristics and causes of gale winds in Zhejiang province affected by typhoon“Lekima”(1909)[J]. Marine forecasts, 2020, 37(6): 83-95.
[9] HE Y C, HE J Y, CHEN W C, et al.Insights from Super Typhoon Mangkhut (1822) for wind engineering practices[J]. Journal of wind engineering and industrial aerodynamics, 2020, 203: 104238.
[10] HYUN Y K, KIM K E, HA K J.A comparison of methods to estimate the height of stable boundary layer over a temperate grassland[J]. Agricultural and forest meteorology, 2005, 132(1-2): 132-142.
[11] DAI C, WANG Q, KALOGIROS J A, et al.Determining boundary-layer height from aircraft measurements[J]. Bound ary-layer meteorology, 2014, 152(3): 277-302.
[12] HUANG M F, WANG Y F, LOU W J.Examination of typhoon-wind profiles reaching 1000-m height over the southeast China Sea based on Reanalysis data set and mesoscale simulation[J]. Journal of structural engineering, 2020, 146(9): 04020192.
[13] 柯清派, 史训涛, 雷金勇, 等. 大气层结和海气交换作用影响的海面风剖面研究[J]. 热带气象学报, 2020, 36(3): 370-376.
KE Q P, SHI X T, LEI J Y, et al.Influence of atmospheric stratification and air-sea interaction on sea surface wind profile[J]. Journal of tropical meteorology, 2020, 36(3): 370-376.
[14] 张璐, 张熠, 周博闻. 水平湍流混合对莫拉克(2009)台风强度及结构的影响[J]. 南京大学学报(自然科学), 2020, 56(5): 616-629.
ZHANG L, ZHANG Y, ZHOU B W.The impact of horizontal turbulent mixing on simulation of structure and intensity of Typhoon Morako(2009)[J]. Journal of Nanjing University(natural scienceedction), 2020, 56(5): 616-629.
[15] BRAUN S A, TAO W K.Sensitivity of high-resolution simulations of hurricane Bob (1991) to planetary boundary layer parameterizations[J]. Monthly weather review, 2000, 128(12): 3941-3961.
[16] 徐智伟, 王劲松, 饶惠明, 等. 台风“白鹿”影响下泉州湾近地脉动风速功率谱及其拟合参数分析[J]. 振动与冲击, 2021, 40(16): 253-260.
XU Z W, WANG J S, RAO H M, et al.A study on near-ground turbulence power spectrum and its fitted parameters at Quanzhou Bay under the influence of typhoon "Bailu"[J]. Journal of vibration and shock, 2021, 40(16): 253-260.
[17] 肖仪清, 李利孝, 宋丽莉, 等. 基于近海海面观测的台风黑格比风特性研究[J]. 空气动力学学报, 2012, 30(3): 380-387, 399.
XIAO Y Q, LI L X, SONG L L, et al.Study on wind characteristics of typhoon Hagupit based on offshore sea surface measurements[J]. Acta aerodynamica sinica, 2012, 30(3): 380-387, 399.
[18] LAPRISE R.The Euler equations of motion with hydrostatic pressure as an independent variable[J]. Monthly weather review, 1992, 120(1): 197-207.
[19] BOOIJ N, HAAGSMA I J G, HILTHUIJSEN L H, et al. SWAN user manuals, SWAN cycle Ⅲ version 40.81[R]. Delft University of Technolog, 2011.
[20] 郑沛楠, 宋军, 张芳苒, 等. 常用海洋数值模式简介[J]. 海洋预报, 2008, 25(4): 108-120.
ZHENG P N, SONG J, ZHANG F R, et al.Common instruction of some ogcm[J]. Marine forecasts, 2008, 25(4): 108-120.
[21] JAPAN METEOROLOGICAL AGENCY. RSMC best track data (Text) [DB/OL]. http://www.jma.go.jp/jma/jma-eng/jma-center/rsmc-hp-pub-eg/besttrack.html.

基金

国家重点研发计划(2000YFB4201201); 国家自然科学基金(52078251; 52108456; 5211101879); 江苏省自然科学基金(BK20211518; BK20210309)

PDF(5376 KB)

Accesses

Citation

Detail

段落导航
相关文章

/