基于机组分类的风电场有功功率分配方法研究

刘军, 赵航, 刘安东

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 396-403.

PDF(2068 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(2068 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 396-403. DOI: 10.19912/j.0254-0096.tynxb.2022-0490

基于机组分类的风电场有功功率分配方法研究

  • 刘军, 赵航, 刘安东
作者信息 +

STUDY ON ACTIVE POWER DISTRIBUTION METHOD OF WIND FARM BASED ON UNIT CLASSIFICATION

  • Liu Jun, Zhao Hang, Liu Andong
Author information +
文章历史 +

摘要

针对单一风速预测方法预测精度不高,以及按风速比例进行风电场机组功率分配时,跟踪功率调度指令误差较大的问题,提出一种组合风速预测方法,并基于机组预测风速、当前风速及输出功率的机组分类,提出一种风电场有功功率分配方法。采用模糊C均值分类方法对机组进行分类,根据分类结果确定功率调节优先级,将功率指令分配到不同类机组,再按某一类各机组输出功率的比例分配至每台机组,实现整个风电场有功功率分配。以某风电场实际风速数据进行风速预测和有功功率分配仿真研究,仿真结果表明,该文提出的组合风速预测方法和风电场有功功率分配方法具有风速预测精度高、风电场输出功率跟踪精度高,参与有功功率调节的机组数目少的优点。

Abstract

Aiming at the problems of low prediction accuracy of single wind speed prediction method and large error of tracking power dispatching instruction when power distribution of wind farm units is carried out according to wind speed ratio, a combined wind speed prediction method is proposed. Based on the unit classification of the predicted wind speed, current wind speed and output power, a method of active power distribution for wind farms is proposed. The fuzzy C-means classification method is used to classify the units. The power regulation priority is determined according to the classification results. The power instructions are allocated to different types of units, and then allocated to each unit according to the proportion of the output power of each unit of a certain class, so as to realize the active power distribution of the whole wind farm. Wind speed prediction and active power distribution simulation research are carried out based on actual wind speed data of a wind farm. The simulation results show that the combined wind speed prediction method and active power distribution method proposed in this paper have the advantages of high wind speed prediction accuracy, high output power tracking accuracy and small number of units involved in active power regulation.

关键词

风电场 / 有功功率 / 风电机组分类 / 实时风速

Key words

wind farm / active power / wind turbine classification / real time wind speed

引用本文

导出引用
刘军, 赵航, 刘安东. 基于机组分类的风电场有功功率分配方法研究[J]. 太阳能学报. 2023, 44(8): 396-403 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0490
Liu Jun, Zhao Hang, Liu Andong. STUDY ON ACTIVE POWER DISTRIBUTION METHOD OF WIND FARM BASED ON UNIT CLASSIFICATION[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 396-403 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0490
中图分类号: TK89    TK81   

参考文献

[1] 中国电力网. 2020年全球及中国风电行业发展现状分析[EB/OL]. http://www.chinapower.com.cn/zx/hyfx/20200827/28774.html.
China Power Grid. Analysis on the development status of global and chinese wind power industry in 2020[EB/OL]. http://www.chinapower.com.cn/zx/hyfx/20200827/28774.html.
[2] 国家发展改革委员会. 可再生能源发展“十三五”规划(下)[J]. 太阳能, 2017(3): 5-12, 37.
National Development and Reform Commission. The 13th five year plan for renewable energy development (Part 2)[J]. 2017(3): 5-12, 37.
[3] POUL S, ANCA-D H, FLORIN I.Wind farm models and control strategies[R]. Risø report, Denmark, 2005.
[4] 樊新东, 杨秀媛, 金鑫城. 风电场有功功率控制综述[J]. 发电技术, 2018, 39(3): 268-276.
FAN X D, YANG X Y, JIN X C.An overview of active power control in wind farms[J]. Power generation technology, 2018, 39(3): 268-276.
[5] 赵婷. 风电场发电机组功率分配控制研究[D]. 西安: 西安理工大学, 2018.
ZHAO T.Research on wind farm active power allocation and control[D]. Xi’an: Xi’an University of Technology, 2018.
[6] 刘军, 张彬彬, 赵婷. 基于模糊评价的风电场有功功率分配算法[J]. 电工技术学报, 2019, 34(4): 786-794.
LIU J, ZHANG B B, ZHAO T.Research on wind farm active power dispatching algorithm based on fuzzy evaluation[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 786-794.
[7] 靳小钊, 王娟娟, 赵闻蕾. 基于灰色系统GM(1,1)模型的短期风速预测算法[J]. 化工自动化及仪表, 2015, 42(11): 1247-1249.
JIN X Z, WANG J J, ZHAO W L.Prediction algorithm for short-term wind speed based on gray system GM(1, 1) model[J]. Control and instruments in chemical industry, 2015, 42(11): 1247-1249.
[8] 周建强, 李玉娜, 屈卫东, 等. 基于风速时空信息的BP神经网络超短期风速预测研究[J]. 电网与清洁能源, 2015, 31(1): 109-112.
ZHOU J Q, LI Y N, QU W D, et al.A study on BP neural network ultra-short-term wind speed forecast based on historical and spatial wind speed data[J]. Power system and clean energy, 2015, 31(1): 109-112.
[9] 张文, 胡从川, 阙波.一种实时校正的改进BP神经网络超短期风速预测模型[J]. 电网与清洁能源, 2016, 32(9): 118-122, 127.
ZHANG W, HU C C, QUE B.An ultra-short-term wind speed prediction model based on improved BP neural network with real-time correction[J]. Power system and clean energy, 2016, 32(9): 118-122, 127.
[10] 李辉, 陶伟, 姜一波, 等. 基于DTCWT与LSSVM的风电场短期风速预测[J]. 常州工学院学报, 2019, 32(1): 14-19.
LI H, TAO W, JIANG Y B, et al.Short-term wind speed forecasting of wind farms based on DTCWT and LSSVM[J]. Journal of Changzhou Institute of Technology, 2019, 32(1): 14-19.
[11] 叶林, 张慈杭, 汤涌, 等. 多时空尺度协调的风电集群有功分层预测控制方法[J]. 中国电机工程学报, 2018, 38(13): 3767-3780, 4018.
YE L, ZHANG C H, TANG Y, et al.Active power stratification predictive control approach for wind power cluster with multiple temporal and spatial scales coordination[J]. Proceedings of the CSEE, 2018, 38(13): 3767-3780, 4018.
[12] 梅华威, 米增强, 李聪, 等. 采用机组风速信息动态分类的风电场有功控制策略[J]. 中国电机工程学报, 2014, 34(34): 6058-6065.
MEI H W, MI Z Q, LI C, et al.An active control strategy based on wind speed information dynamic classification for WTGS in wind farm[J]. Proceedings of the CSEE, 2014, 34(34): 6058-6065.
[13] LIU M, ZOU J X, PENG C, et al.Active power control for wind farms based on MPC combined with state classification[J]. IFAC papers on line, 2017, 50(1): 2137-2144.
[14] ZHANG J H, LIU Y Q, INFZEID D, et al.Optimal power dispatch within wind farm based on two approaches to wind turbine classification[J]. Renewable energy, 2017, 102: 487-501.

基金

自然科学专项(JK725); 陕西省重点研发计划(2021GY—106)

PDF(2068 KB)

Accesses

Citation

Detail

段落导航
相关文章

/