关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究

刘艳峰, 杨燕子, 罗西

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 110-118.

PDF(1695 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1695 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 110-118. DOI: 10.19912/j.0254-0096.tynxb.2022-0491

关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究

  • 刘艳峰, 杨燕子, 罗西
作者信息 +

MULTI-OBJECTIVE OPTIMIZATION SCHEDULING MODEL OF FLEXIBLE ENERGY CONSUMPTION LOAD IN SUMMER FOR DIFFERENT TYPES OF RURAL HOUSEHOLDS IN GUANZHONG PLAIN

  • Liu Yanfeng, Yang Yanzi, Luo Xi
Author information +
文章历史 +

摘要

发展农村可再生能源,解决供给随机波动所导致的供需匹配问题至关重要。在经济可行的范围内,现有供需匹配提升作用基本已被发挥至上限,柔性用能负荷调节是从需求侧解决问题的革命性新方法。该文基于关中农村实地调研数据,分析不同类型家庭夏季用能特征,在充分考虑柔性用能负荷的前提下,建立求解以经济性与舒适性为目标的农村家庭柔性用能负荷多目标优化调度模型。结果表明:1)关中农村家庭根据用能特征可分为独居老年家庭(第一类)、三代同堂家庭(第二类)、居家青年家庭(第三类)以及务工青年家庭(第四类)。2)峰谷电价下,第二类家庭负荷调节潜力最大,用电成本削减比例最高为19.5%,不舒适指数增加比例最高为46.3%;第四类家庭负荷调节潜力最小,用电成本削减比例最高为12.3%,不舒适指数增加比例最高为17.8%。3)对于可平移类柔性负荷,第一、二、三类家庭可调节潜力均较大;对于可中断类柔性负荷,第一类家庭可调节潜力最大;对于可削减类柔性负荷,第二类家庭可调节潜力最大。

Abstract

It is crucial to develop rural renewable energy and solve the supply and demand matching problem caused by random supply fluctuations. Within the scope of economic feasibility, the existing supply and demand matching has been basically played to the upper limit. Flexible energy load regulation is a revolutionary new method to solve the problem from the demand side. Based on the field survey data in Guanzhong countryside, this study analyzes the energy consumption characteristics of different types of households in summer, and establishes a multi-objective optimization scheduling model with the goal of economy and comfort under the premise of fully considering the flexible energy use load. The results show that: i) According to the characteristics of energy use, rural families in Guanzhong can be divided into Single Elderly Families ( TypeⅠ), Three Generations of Family ( TypeⅡ), Home Youth Families (Type Ⅲ) and Working Youth Families ( Type Ⅳ); ii) Under peak-valley electricity price, the second type of household has the greatest potential for load regulation, with a reduction in electricity cost up to 19.5 % and an increase in discomfort index up to 46.3 %; The fourth type of household load adjustment potential is minimum, and the reduction rate of electricity cost is only up to 12.3 %, and the discomfort index increase rate is only up to 17.8%; iii) For shiftable flexible loads, the first three types of households have relatively great adjustable potential; for interruptible flexible loads, the first type of household has the greatest adjustable potential; for curtailable flexible loads, the second type of household has the greatest adjustable potential.

关键词

需求侧管理 / 多目标优化 / 遗传算法 / 柔性负荷 / 家庭特征 / K-均值聚类

Key words

demand-side management / multi-objective optimization / genetic algorithms / flexible load / family characteristics / K-means clustering

引用本文

导出引用
刘艳峰, 杨燕子, 罗西. 关中农村不同类型家庭夏季柔性用能负荷多目标优化调度研究[J]. 太阳能学报. 2023, 44(8): 110-118 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0491
Liu Yanfeng, Yang Yanzi, Luo Xi. MULTI-OBJECTIVE OPTIMIZATION SCHEDULING MODEL OF FLEXIBLE ENERGY CONSUMPTION LOAD IN SUMMER FOR DIFFERENT TYPES OF RURAL HOUSEHOLDS IN GUANZHONG PLAIN[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 110-118 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0491
中图分类号: TK01   

参考文献

[1] YAMAGUCHI Y L, CHEN F C, SHIMODA Y, et al.An integrated of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities[J]. Energy policy, 2020, 142:111467.
[2] NAN S B, ZHOU M, LI G Y.Optimal residential community demand response scheduling in smart grid[J]. Applied energy, 2018, 210: 1280-1289.
[3] MA K, YANG T, YANG J, et al.Residential power scheduling for demand response in smart grid[J]. International journal electrical power and energy system, 2016, 78: 320-325.
[4] 吴施美, 郑新业. 收入增长与家庭能源消费阶梯: 基于中国农村家庭能源消费调查数据的再检验[J]. 经济学(季刊), 2022, 22(1): 45-66.
WU S M, ZHENG X Y.Revisit of household energy ladder: empirical evidence from a household survey in rural China[J]. China economic quarterly, 2022, 22(1): 45-66.
[5] 黄涵荣, 陈志毅. 赣南农村地区农宅用能现状及优化研究[J]. 山西建筑, 2021, 47(18): 157-159.
HUANG H R, CHEN Z Y.Study on the current situation and optimization of energy use in farm houses in rural areas of Gannan[J]. Shanxi architecture, 2021, 47(18): 157-159.
[6] 曹渝婧. 重庆农村生活用能现状及影响因素分析[D]. 重庆: 重庆大学, 2019.
CAO Y J.Analysis of rural household energy consumption status and influence factor in Chongqing[D]. Chongqing: Chongqing University, 2019.
[7] 傅质馨, 李紫嫣, 李寒兵, 等. 基于分时电价和激励补贴机制的家庭能量双层优化模型[J]. 电力建设, 2021, 42(11): 108-116.
FU Z X, LI Z Y, LI H B, et al.Two-tier optimization model of home energy considering time-of-use electricity price and incentive subsidy mechanism[J]. Electric power construction, 2021, 42(11): 108-116.
[8] 曲朝阳, 韩晶, 曲楠, 等. 考虑家电关联与舒适性相结合的用电行为多目标优化模型[J]. 电力系统自动化, 2018, 42(2): 50-57.
QU Z Y, HAN J, QU N, et al.Multi-objective optimization model of electricity consumption behavior considering combination of household appliance correlation and comfort[J]. Automation of electric power systems, 2018, 42(2): 50-57.
[9] 赫卫国, 夏俊荣, 刘志明, 等. 考虑用户缴费满意度与用电舒适度的用电优化策略[J]. 电力需求侧管理, 2020, 22(1): 69-74.
HE W G, XIA J R, LIU Z M, et al.Power optimal strategy considering user-charging satisfaction and user comfort[J]. Power demand side management, 2020, 22(1): 69-74.
[10] 王珑, 王进, 垄晓琴, 等. 基于用户满意度的家庭能量管理系统协调优化调度[J]. 电力学报, 2019, 34(2): 101-108, 174.
WANG L, WANG J, LONG X Q, et al.The home energy management system coordinated and optimized scheduling based on user’s satisfaction[J]. Journal of electric power, 2019, 34(2): 101-108, 174.
[11] JAVADI M S, NEZHAD A E, NARDELLI P H J, et al. Self-scheduling model for home energy management systems considering the end-users discomfort index within price-based demand response programs[J]. Sustainable cities and society, 2021, 68: 102792.
[12] 李帅虎, 何义, 彭寒梅, 等. 计及储能与可控负荷的智能楼宇系统短期优化调度[J]. 电力系统及其自动化学报, 2020, 32(7): 9-17.
LI S H, HE Y, PENG H M, et al.Short-term optimal scheduling of intelligent building system considering energy storage and controllable load[J]. Proceedings of the CSU-EPSA, 2020, 32(7): 9-17.
[13] 张延宇, 曾鹏, 李忠文, 等. 智能电网环境下空调系统多目标优化控制算法[J]. 电网技术, 2014, 38(7): 1819-1826.
ZHANG Y Y, ZENG P, LI Z W, et al.A multi-objective optimal control algorithm for air conditioning system in smart grid[J]. Power system technology, 2014, 38(7): 1819-1826.
[14] 严强, 李扬, 樊友杰, 等. 基于加权表决集成聚类的居民用电行为回归分析[J]. 电网技术, 2021, 45(11): 4435-4443.
YAN Q, LI Y, FAN Y J, et al.Regression analysis of residential electricity consumption behavior based on weighted voting ensemble clustering[J]. Power system technology, 2021, 45(11): 4435-4443.
[15] 陕西省发展和改革委员会价格处. 关于调整陕西电网目录销售电价有关事项的通知[EB/OL]. 西安: 陕西省发展和改革委员会, 2021.

基金

国家自然科学基金(U20A20311; 52008328)

PDF(1695 KB)

Accesses

Citation

Detail

段落导航
相关文章

/