虚拟同步发电机对系统低频振荡的影响及抑制方法综述

程珊珊, 王海鑫, 杨子豪, 杨俊友, 卢盛阳

太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 119-129.

PDF(1833 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1833 KB)
太阳能学报 ›› 2023, Vol. 44 ›› Issue (8) : 119-129. DOI: 10.19912/j.0254-0096.tynxb.2022-0497

虚拟同步发电机对系统低频振荡的影响及抑制方法综述

  • 程珊珊1, 王海鑫1, 杨子豪1,2, 杨俊友1, 卢盛阳1,3
作者信息 +

OVERVIEW OF EFFECT OF VIRTUAL SYNCHRONOUS GENERATORS ON LOW-FREQUENCY OSCILLATION OF POWER SYSTEM AND SUPPRESSION METHODS

  • Cheng Shanshan1, Wang Haixin1, Yang Zihao1,2, Yang Junyou1, Lu Shengyang1,3
Author information +
文章历史 +

摘要

为梳理虚拟同步发电机接入后对系统低频振荡的影响,进一步发掘其在提供阻尼和惯量方面的潜力和应用,开展相关梳理和研究工作。首先,归纳和总结电力系统低频振荡的研究现状;然后,对非同步发电机电源并网后对系统低频振荡的影响进行概括和分析;最后,综述伴随非同步发电机电源接入的虚拟同步发电机对系统低频振荡的影响和抑制方法,并针对虚拟同步发电机在新型电力系统应用过程中亟需解决的关键问题提出进一步的思考和展望。

Abstract

In order to sort out the influence of the virtual synchronous generators on the low-frequency oscillation of the system, and further explore its potential and application in providing damping and inertia, relevant research work has been carried out. Firstly, the research status of power system low frequency oscillation is summarized. Then, the influence of the non-synchronous machine power supply on the low-frequency oscillation is summarized and analyzed. Finally, the influence of the virtual synchronous generators with non-synchronous power supply on the low-frequency oscillation of the system is summarized, in view of the key problems that need to be solved urgently in the application of virtual synchronous generators in new power system, the further prospect and thinking are put forward.

关键词

新型电力系统 / 虚拟同步发电机 / 非同步发电机电源 / 低频振荡 / 虚拟惯量

Key words

new power system / virtual synchronous generator / asynchronous machine power supply / low-frequency oscillation / virtual inertia

引用本文

导出引用
程珊珊, 王海鑫, 杨子豪, 杨俊友, 卢盛阳. 虚拟同步发电机对系统低频振荡的影响及抑制方法综述[J]. 太阳能学报. 2023, 44(8): 119-129 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0497
Cheng Shanshan, Wang Haixin, Yang Zihao, Yang Junyou, Lu Shengyang. OVERVIEW OF EFFECT OF VIRTUAL SYNCHRONOUS GENERATORS ON LOW-FREQUENCY OSCILLATION OF POWER SYSTEM AND SUPPRESSION METHODS[J]. Acta Energiae Solaris Sinica. 2023, 44(8): 119-129 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0497
中图分类号: TK513.5   

参考文献

[1] 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2818.
ZHANG Z G, KANG C Q.Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2818.
[2] 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9): 3036-3046.
HAN X Q, LI T J, ZHANG D X, et al.New lssues and key technologies of new power system planning under double carbon goals[J]. High voltage engineering, 2021, 47(9): 3036-3046.
[3] GOLPÎRA H, SEIFI H, MESSINA A R, et al. Maximum penetration level of micro-grids in large-scale power systems: frequency stability viewpoint[J]. IEEE transactions on power systems, 2016, 31(6): 5163-5171.
[4] YU Y P, GRIJALVA S, THOMAS J J, et al.Oscillation energy analysis of inter-area low-frequency oscillations in power systems[J]. IEEE transactions on power systems, 2016, 31(2): 1195-1203.
[5] SUI X C, TANG Y F, HE H B, et al.Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming[J]. IEEE transactions on power systems, 2014, 29(5): 2539-2548.
[6] 王晓东, 李凯凯, 卢奭瑄, 等. 基于VSG的风电机组虚拟惯量控制策略[J]. 太阳能学报, 2018, 39(5): 1418-1425.
WANG X D, LI K K, LU Y X, et al.Virtual synchronous generator based virtual inertia control strategy of wind turbine[J]. Acta energiae solaris sinica, 2018, 39(5): 1418-1425.
[7] 陈昊, 杨旭红, 张云飞, 等. 基于模糊控制的虚拟阻抗VSG功率解耦策略[J]. 电测与仪表, 2020, 57(14): 135-141.
CHEN H, YANG X H, ZHANG Y F, et al.Strategy of power decoupling for VSG based on virtual impedance of fuzzy control[J]. Electrical measurement & instrumentation, 2020, 57(14): 135-141.
[8] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175.
ZHENG T W, CHEN L J, CHEN T Y, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of electric power systems, 2015, 39(21): 165-175.
[9] DEMELLO F P, CONCORDIA C.Concepts of synchronous machine stability as affected by excitation control[J]. IEEE transactions on power apparatus andsystems, 1969, 88(4): 316-329.
[10] 姜苏娜. 电力系统低频振荡非线性机理及控制策略研究[D]. 北京: 华北电力大学, 2015.
JIANG S N.Research on nonlinear mechanism of power system low frequency oscillation and its control strategies[D]. Beijing: North China Electric Power University, 2015.
[11] 余希瑞, 周林, 郭珂, 等. 含新能源发电接入的电力系统低频振荡阻尼控制研究综述[J]. 中国电机工程学报, 2017, 37(21): 6278-6290.
YU X R, ZHOU L, GUO K, et al.A survey on low frequency oscillation damping control in power system integrated with new energy power generation[J]. Proceedings of the CSEE, 2017, 37(21): 6278-6290.
[12] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002.
NI Y X, CHEN S S, ZHANG B L.The theory and analysis of dynamic power systems[M]. Beijing: Tsinghua University Press, 2002.
[13] KOSTEREV D N, TAYLOR C W, MITELSTADT W A.Model validation for the August 10, 1996 WSCC system outage[J]. IEEE transactions on power systems, 1999, 14(3): 967-979.
[14] 余保东, 孙建波, 汤胜祥, 等. 湖北电网低频振荡计算分析[J]. 电力系统自动化, 2001, 25(15): 39-42.
YU B D, SUN J B, TANG S X, et al.Analysis of low frequency oscillation in Hubei electric power system[J]. Automation of electric power systems, 2001, 25(15): 39-42.
[15] 高建玺. PSS解甘肃电网燃眉之急[N]. 中国电力报, 2004, 5(9): 2.
GAO J X.PSS solves the urgent need of Gansu power grid [N]. China electric power news, 2004, 5(9): 2.
[16] 薛禹胜. 综合防御由偶然故障演化为电力灾难: 北美“8·14”大停电的警示[J]. 电力系统自动化, 2003, 27(18): 1-5, 37.
XUE Y S.The way from a simple contingency to system-wide disaster: lessons from the Eastern Interconnection Blackout in 2003[J]. Automation of electric power systems, 2003, 27(18): 1-5, 37.
[17] 秦文萍, 徐红利. “9. 1”蒙西电网机组低频振荡现象分析[J]. 太原理工大学学报, 2007, 38(1): 51-55.
QIN W P, XU L H.Analysis of low-frequency oscillation of generators in Mengxi power grid[J]. Journal of Taiyuan University of Technology, 2007, 38(1): 51-55.
[18] 梁志飞, 肖鸣, 张昆, 等. 南方电网低频振荡控制策略探讨[J]. 电力系统自动化, 2011, 35(16): 54-58.
LIANG Z F, XIAO M, ZHANG K, et al.Discussion on control strategy for low frequency oscillation in China southern power grid[J]. Automation of electric power systems, 2011, 35(16): 54-58.
[19] ADAMS J, PAPPU V A, DIXIT A.Ercot experience screening for sub-synchronous control interaction in the vicinity of series capacitor banks[C]//IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012: 1-5.
[20] 李明节, 于钊, 许涛, 等. 新能源并网系统引发的复杂振荡问题及其对策研究[J]. 电网技术, 2017, 41(4): 1035-1042.
LI M J, YU Z, XU T, et al.Study of complex oscillation caused by renewable energy integration and its solution[J].Power system technology, 2017, 41(4): 1035-1042.
[21] 宋墩文, 杨学涛, 丁巧林, 等. 大规模互联电网低频振荡分析与控制方法综述[J]. 电网技术, 2011, 35(10): 22-28.
SONG D W, YANG X T, DING Q L, et al.A survey on analysis on low frequency oscillation in large-scale interconnected power grid and its control measures[J]. Power system technology, 2011, 35(10): 22-28.
[22] 杜文娟, 王海风. 电力系统低频功率振荡模式分析理论与方法[M]. 北京: 科学出版社, 2017.
DU W J, WANG H F.Theory and method of power system low frequency power oscillation mode analysis[M]. Beijing: Science Press, 2017.
[23] 谢小荣, 刘华坤, 贺静波, 等. 新能源发电并网系统的小信号阻抗/导纳网络建模方法[J]. 电力系统自动化,2017, 41(12): 26-32.
XIE X R, LIU H K, HE J B, et al.Small-signal impedance/admittance network modeling for grid-connected renewable energy generations systems[J]. Automation of electric power systems, 2017, 41(12): 26-32.
[24] 周守为, 朱军龙. 助力“碳达峰、碳中和”战略的路径探索[J]. 天然气工业, 2021, 41(12): 1-8.
ZHOU S W, ZHU J L.Exploration of ways to helping "Carbon Peak and Neutrality" strategy[J]. Natural gas industry, 2021, 41(12): 1-8.
[25] ZHANG M, MIAO Z X, FAN L L.Reduced-order analytical models of grid-connected solar photovoltaic systems for low-frequency oscillation analysis[J]. IEEE transactions on sustainable energy, 2021, 12(3): 1662-1671.
[26] 高本锋, 姚磊, 李忍, 等. 大规模光伏电站并网的振荡模式分析[J]. 电力自动化设备, 2017, 37(8): 123-130.
GAO B F, YAO L, LI R, et al.Analysis on oscillation modes of large-scale grid-connected PV power plant[J]. Electric power automation equipment, 2017, 37(8): 123-130.
[27] 熊连松, 刘小康, 卓放, 等. 光伏发电系统的小信号建模及其控制器参数的全局优化设计方法[J]. 电网技术, 2014, 38(5): 1234-1241.
XIONG L S, LIU X K, ZHUO F, et al.Small-signal modeling of photovoltaic power generation system and global optimal design for its controller parameters[J]. Power system technology, 2014, 38(5): 1234-1241.
[28] SHAH R, MITHULANANTHAN N, LEE K Y.Large-scale PV plant with a robust controller considering power oscillation damping[J]. IEEE transactions on energy conversion, 2012, 28(1): 106-116.
[29] 葛景, 都洪基, 赵大伟, 等. 光伏电站接入对多机电力系统低频振荡的影响分析[J]. 电力系统自动化, 2016, 40(22): 63-70.
GE J, DU H J, ZHAO D W, et al.Influences of grid-connected photovoltaic power plants on low frequency oscillation of multi-machine power systems[J]. Automation of electric power systems, 2016, 40(22): 63-70.
[30] QUINTERO J, VITTAL V, HEYDT G T, et al.The impact of increased penetration of converter control-based generators on power system modes of oscillation[J]. IEEE transactions on power systems, 2014, 29(5): 2248-2256.
[31] EFTEKHARNEJAD S, VITTAL V, HEYDT G T, et al.Small signal stability assessment of power systems with increased penetration of photovoltaic generation: a case study[J]. IEEE transactions on sustainable energy, 2013, 4(4): 960-967.
[32] LIU H F, JIN L C, LE D, et al.Impact of high penetration of solar photovoltaic generation on power system small signal stability[C]//2010 International Conference on Power System Technology, Zhejiang, China, 2010: 1-7.
[33] 周林, 任伟, 余希瑞. 大型光伏电站抑制低频振荡的有功阻尼控制策略[J]. 中国电机工程学报, 2016, 36(11): 2987-2995.
ZHOU L, REN W, YU S R.Active damping control strategy in the large-scale photovoltaic plants restraining low-frequency oscillations[J]. Proceedings of the CSEE, 2016, 36(11): 2987-2995.
[34] 王志文, 沈沉, 刘锋. 不同锁相机制的双馈电机对电力系统小干扰稳定的影响分析[J]. 中国电机工程学报, 2014, 34(34): 6167-6176.
WANG Z W, SHEN S, LIU F.Analysis on impact of doubly fed induction generations with different phase lock mechanism on power system small signal stability[J]. Proceedings of the CSEE, 2014, 34(34): 6167-6176.
[35] LI Y, FAN L L, MIAO Z X.Wind in weak grids: low-frequency oscillations, subsynchronous oscillations and torsional interactions[J]. IEEE transactions on power systems, 2019, 35(1): 109-118.
[36] ZHOU W H, WANG Y B, TORRES-OLGUIN R E, et al. Effect of reactive power characteristic of offshore wind power plant on low-frequency stability[J]. IEEE transactions on energy conversion, 2020, 35(2): 837-853.
[37] DU W J, CHEN X, WANG H F.Impact of dynamic interactions introduced by the dfigs on power system electromechanical oscillation modes[J]. IEEE transactions on power systems, 2017, 32(6): 4954-4967.
[38] 李辉, 陈宏文, 杨超, 等. 含双馈风电场的电力系统低频振荡模态分析[J]. 中国电机工程学报, 2013, 33(28): 17-24.
LI H, CHEN H W, YANG C, et al.Modal analysis of the low-frequency oscillation of power systems with DFIG-based wind farms[J]. Proceedings of the CSEE, 2013, 33(28): 17-24.
[39] JIA Y B, HUANG T, LI Y B, et al.Parameter setting strategy for the controller of the DFIG wind turbine considering the small-signal stability of power grids[J]. IEEE access, 2020, 8: 31287-31294.
[40] ARANI M F M, MOHAMED Y A I. Analysis and impacts of implementing droop control in DFIG-based wind turbines on microgrid/weak-grid stability[J]. IEEE transactions on power systems, 2015, 30(1): 385-396.
[41] SUN L, LIU K, HU J B, et al.Analysis and mitigation of electromechanical oscillations for DFIG wind turbines involved in fast frequency response[J]. IEEE transactions on power systems, 2019, 34(6): 4547-4556.
[42] 王忱, 石立宝, 姚良忠, 等. 大规模双馈型风电场的小扰动稳定分析[J]. 中国电机工程学报, 2010, 30(4): 63-70.
WANG C, SHI L B, YAO L Z, et al.Small signal stability analysis of the large-scale wind farm with DFIGs[J]. Proceedings of the CSEE, 2010, 30(4): 63-70.
[43] 和萍, 文福拴, 薛禹胜, 等. 风电场并网对互联系统小干扰稳定及低频振荡特性的影响[J]. 电力系统自动化, 2014, 38(22): 1-10.
HE P, WEN F S, XUE Y S, et al.Impacts of wind power integration on small signal stability and low frequency oscillation characteristics of interconnected power systems[J]. Automation of electric power systems, 2014, 38(22): 1-10.
[44] 杨悦. 含大规模风电并网的互联电力系统低频振荡特性分析与控制研究[D]. 北京: 华北电力大学, 2018.
YANG Y.Analysis and control of low-frequency oscillation characteristics of interconnected power system including large-scale wind power grid-connected research[D]. Beijing: North China Electric Power University, 2018.
[45] DU W J, BI J T, WANG T, et al.Impact of grid connection of large-scale wind farms on power system small-signal angular stability[J]. CSEE journal of power and energy systems, 2015, 1(2): 83-89.
[46] 颜湘武, 刘正男, 徐恒波, 等. 虚拟同步发电机特性的三相逆变器小信号建模及分析[J]. 华北电力大学学报(自然科学版), 2016, 43(3): 1-8.
YAN X W, LIU Z N, XU H B, et al.Small-signal modeling and analysis of three-phase characteristics of virtual synchronous generator[J]. Journal of North China Electric Power University(natural science edition), 2016, 43(3): 1-8.
[47] ARANI M F M, ELSAADANY E F. Implementing virtual inertia in DFIG-based wind power generation[J]. IEEE transactions on power systems, 2013, 28(2): 1373-1384.
[48] 孙大卫, 刘辉, 吴林林, 等. 虚拟同步发电机对低频振荡的影响建模与特性分析[J]. 电力系统自动化, 2020, 44(24): 134-144.
SUN D W, LIU H, WU L L, et al.Modeling and characteristic analysis on influence of virtual synchronous generator generation on low-frequency oscillation[J]. Automation of electric power systems, 2020, 44(24): 134-144.
[49] DU W J, FU Q, WANG H F.Power system small-signal angular stability affected by virtual synchronous generators[J]. IEEE transactions on power systems, 2019, 34(4): 3209-3219.
[50] 付强, 杜文娟, 王海风. 多虚拟同步发电机接入对电力系统机电振荡模式的影响[J]. 中国电机工程学报, 2018, 38(19): 5615-5624.
FU Q, DU W J, WANG H F.Influence of multi virtual synchronous generators on power system electromechanical oscillation mode[J]. Proceedings of the CSEE, 2018, 38(19): 5615-5624.
[51] 王金华, 王宇翔, 顾云杰, 等. 基于虚拟同步发电机控制的并网变流器同步频率谐振机理研究[J]. 电源学报, 2016, 14(2): 17-23.
WANG J H, WANG Y X, GU Y J, et al.Synchronous frequency resonance in grid-connected VSCs with virtual synchronous generator technology[J]. Journal of power supply, 2016, 14(2): 17-23.
[52] ZHANG B, YAN X W, ALTAHIR S Y.Control design and small-signal modeling of multi-parallel virtual synchronous generators[C]//2017 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering, Cadiz, Spain, 2017: 471-476.
[53] 王倩, 孙大卫, 盛四清, 等. 内禀自同步虚拟同步发电机对系统低频振荡特性的影响[J]. 太阳能学报, 2021, 42(12): 410-418.
WANG Q, SUN D W, SHENG S Q, et al.Effect of virtual synchronous generator on low frequency oscillation characteristics of system[J]. Acta energiae solaris sinica, 2021, 42(12): 410-418.
[54] 颜湘武, 刘正男, 张波, 等. 具有同步发电机特性的并联逆变器小信号稳定性分析[J]. 电网技术, 2016, 40(3): 910-917.
YAN X W, LIU Z N, ZHANG B, et al.Small-signal stability analysis of parallel inverters with synchronous generator characteristics[J]. Power system technology, 2016, 40(3): 910-917.
[55] 涂春鸣, 谢伟杰, 肖凡, 等. 多虚拟同步发电机并联系统控制参数对稳定性的影响分析[J]. 电力系统自动化, 2020, 44(15): 77-86.
TU C M, XIE W J, XIAO F, et al.Influence analysis of control parameters of parallel system with multiple virtual synchronous generators on stability[J]. Automation of electric power systems, 2020, 44(15): 77-86.
[56] 邱彬, 胡善华, 苏小平, 等. 基于SOC特性边界条件下VSG在光伏发电中最优控制策略研究[J]. 电子测量与仪器学报, 2019, 33(9): 33-40.
QIU B, HU S H, SU X P, et al.Research on optimal control strategy of VSG in photovoltaic generation based on SOC characteristic bounday condition[J]. Journal of electronic measurement and instrumentation, 2019, 33(9): 33-40.
[57] TORRES L M A, LOPES L A C, MORÁN T L A, et al. Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control[J]. IEEE transactions on energy conversion, 2014, 29(4): 833-840.
[58] ALIPOOR J, MIURA Y, ISE T.Stability assessment and optimization methods for microgrid with multiple VSG units[J]. IEEE transactions on smart grid, 2018, 9(2): 1462-1471.
[59] 吴鸣, 吕志鹏, 秦岭, 等. 变电网运行条件下虚拟同步发电机鲁棒控制参数设计[J]. 电网技术, 2019, 43(10): 3743-3753.
WU M, LYU Z P, QIN L, et al.Robust control parameter design for virtual synchronous generator under variable operation conditions of grid[J]. Power system technology, 2019, 43(10): 3743-3753.
[60] FATHI A, SHAFIEE Q, BEVRANI H.Robust frequency control of microgrids using an extended virtual synchronous generator[J]. IEEE transactions on power systems, 2018, 33(6): 6289-6297.
[61] HAN J B, LIU Z J, LIANG N.Nonlinear adaptive robust control strategy of doubly fed induction generator based on virtual synchronous generator[J]. IEEE access, 2020, 8: 159887-159896.
[62] WANG W Y, JIANG L, CAO Y J, et al.A parameter alternating VSG controller of vsc-mtdc systems for low frequency oscillation damping[J]. IEEE transactions on power systems, 2020, 35(6): 4609-4621.
[63] XI X Z, GENG H, YANG G.Small signal stability of weak power system integrated with inertia tuned large scale wind farm[C]//IEEE Innovative Smart Grid Technologies-Asia, Kuala Lumpur, Malaysia, 2014, 514-518.
[64] 熊鸿韬, 汪宗恒, 尚磊, 等. 一种用于电力系统低频振荡抑制的新能源电站阻尼注入控制器设计及特性分析[J]. 电网技术, 2022, 46(7): 2690-2700.
XIONG H T,WANG Z H,SHANG L,et al.Damping injection controller of renewable energy for power system low frequency oscillation mitigation and its dynamic characteristics analysis[J]. Power system technology,2022, 46(7): 2690-2700.
[65] LI D D, ZHU Q W, LIN S F, et al.A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE transactions on energy conversion, 2016, 32(1): 397-398.
[66] LI M Y, HUANG W T, TAI N L, et al.A dual-adaptivity inertia control strategy for virtual synchronous generator[J]. IEEE transactions on power systems, 2019, 35(1): 594-604.
[67] YAO F J, ZHAO J B, LI X J, et al.RBF neural network based virtual synchronous generator control with improved frequency stability[J]. IEEE transactions on industrial informatics, 2021, 17(6): 4014-4024.
[68] WANG F, ZHANG L J, FENG X Y, et al.An adaptive control strategy for virtual synchronous generator[J]. IEEE transactions on industry applications,2018, 54(5): 5124-5133.
[69] LI J, WEN B Y, WANG H Y.Adaptive virtual inertia control strategy of VSG for micro-grid based on improved bang-bang control strategy[J]. IEEE access, 2019, 7: 39509-39514.
[70] 张福东, 朴政国, 郭裕祺, 等. VSG转动惯量的自适应控制策略研究[J]. 太阳能学报, 2020, 41(10): 93-100.
ZHANG F D, PU Z G, GUO Y Q, et al.Research on adaptive control strategy of VSG rotational inertia[J]. Acta energiae solaris sinica, 2020, 41(10): 93-100.
[71] ALIPOOR J, MIURA Y, ISE T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE journal of emerging and selected topics in power electronics, 2014, 3(2): 451-458.
[72] SHINTAI T, MIURA Y, ISE T.Oscillation damping of a distributed generator using a virtual synchronous generator[J]. IEEE transactions on power delivery, 2013, 29(2): 668-676.
[73] MAURICIO J M, LEON A E.Improving small-signal stability of power systems with significant converter-interfaced generation[J]. IEEE transactions on power systems, 2020, 35(4): 2904-2914.
[74] 李志军, 贾学岩, 王丽娟, 等. 基于改进惯量阻尼特性的VSG控制策略[J]. 太阳能学报, 2021, 42(7): 78-85.
LI Z J, JIA X Y, WANG L J, et al.Improved virtual synchronous generator based on enhanced inertia and damping characteristics[J]. Acta energiae solaris sinica, 2021, 42(7): 78-85.

基金

国网辽宁省电力有限公司“揭榜挂帅”科技攻关项目(2021YF-82); 辽宁省教育厅科技项目(LQGD2019005)

PDF(1833 KB)

Accesses

Citation

Detail

段落导航
相关文章

/