考虑氢燃料电池响应延迟特性的电网日内优化调度

韩丽, 鲁盼盼, 王晓静, 李梦洁

太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 373-381.

PDF(1819 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(1819 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (6) : 373-381. DOI: 10.19912/j.0254-0096.tynxb.2022-0501

考虑氢燃料电池响应延迟特性的电网日内优化调度

  • 韩丽, 鲁盼盼, 王晓静, 李梦洁
作者信息 +

INTRADAY OPTIMAL DISPATCH OF POWER GRID CONSIDERING RESPONSE DELAY CHARACTERISTICS OF HYDROGEN FULE CELLS

  • Han Li, Lu Panpan, Wang Xiaojing, Li Mengjie
Author information +
文章历史 +

摘要

在以往调度模型中忽略了氢储能系统中氢-电环节氢燃料电池(HFC)作为一种电源其自身的响应延迟特性,这将造成电网切负荷并影响其稳定运行;由于HFC在不同负载其最优运行温度不同,当HFC在常温下启动时,工作温度的变化是造成其响应延迟的主要因素,因此该文从HFC的工作温度出发,分析HFC的响应延迟特性,建立其响应延迟特性模型,并分析负荷对其响应时间的影响,得到其在不同载荷率下的响应时间,最后结合电网日内调度周期的特点,提出根据HFC的载荷率不同,制定其能够响应不同调度周期的日内调度策略。

Abstract

In the previous dispatch model, the response delay characteristics of the hydrogen-electric link hydrogen fuel cell (HFC) as a power source in the hydrogen energy storage system were ignored, which would cause load shedding of the power grid and affect its stable operation. The optimal operating temperature of HFC is different under different loads. When HFC starts at room temperature, the change of operating temperature is the main factor that causes its response delay. Therefore, aiming at the working temperature of HFC, this paper analyzes the response delay characteristics of HFC, establishes its response delay characteristic model, and analyzes the influence of load on its response time, and obtains its response time under different load rates. Finally, combined with the characteristics of the intraday dispatch period of the power grid, the intraday dispatch strategies that is formulated can respond to different dispatch periods according to the different load rates of the HFC.

关键词

氢储能 / 电制氢 / 氢燃料电池 / 响应延迟

Key words

hydrogen energy storage / electric hydrogen production / hydrogen fuel cell / response delay

引用本文

导出引用
韩丽, 鲁盼盼, 王晓静, 李梦洁. 考虑氢燃料电池响应延迟特性的电网日内优化调度[J]. 太阳能学报. 2022, 43(6): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0501
Han Li, Lu Panpan, Wang Xiaojing, Li Mengjie. INTRADAY OPTIMAL DISPATCH OF POWER GRID CONSIDERING RESPONSE DELAY CHARACTERISTICS OF HYDROGEN FULE CELLS[J]. Acta Energiae Solaris Sinica. 2022, 43(6): 373-381 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0501
中图分类号: TM734   

参考文献

[1] 中国化学与物理电源行业协会储能应用分会. 2021储能产业应用研究报告[C]//中国化学与物理电源行业协会储能应用分会, 北京, 2021.
[2] 杨金刚, 刘维妙, 李顺昕, 等. 风氢耦合发电系统优化运行策略与效益分析[J]. 电力建设, 2017, 38(1): 106-115.
YANG J G, LIU W M, LI S X, et al.Optimal operation scheme and benefit analysis of wind-hydrogen power systems[J]. Electric power construction, 2017, 38(1): 106-115.
[3] 邵志芳, 吴继兰, 赵强, 等. 风电制氢效费分析模型及仿真[J]. 技术经济, 2018, 37(6): 69-75, 129.
SHAO Z F, WU J L, ZHAO Q, et al.Cost effectiveness analysis model for wind power produce hydrogen systemand simulation[J]. Technology economics, 2018, 37(6): 69-75, 129.
[4] 魏繁荣, 随权, 林湘宁, 等. 一种电网多主体场景下的制氢装置新运营模式及其调度策略[J]. 中国电机工程学报, 2018, 38(11): 3214-3225.
WEI F R, SUI Q, LIN X N, et al.A new equity mode and scheduling strategy of hydrogen production equipment in the multi-subject scene of the grid[J]. Proceedings of the CSEE, 2018, 38(11): 3214-3225.
[5] 魏繁荣, 随权, 林湘宁, 等. 考虑制氢设备效率特性的煤风氢能源网调度优化策略[J]. 中国电机工程学报, 2018, 38(5): 1428-1439.
WEI F R, SUI Q, LIN X N, et al.Energy control scheduling optimization strategy for coal-wind-hydrogen energy grid under consideration of the efficiency features of hydrogen production equipment[J]. Proceedings of the CSEE, 2018, 38(5): 1428-1439.
[6] ZHANG H C, LIN G X, CHEN J C.Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production[J]. International journal of hydrogen energy, 2010, 35(20): 10851-10858.
[7] 李雪松, 随权, 林湘宁, 等. 一种兼顾富余风电充分消纳和全局效益的电网灵活负荷控制策略[J]. 中国电机工程学报, 2020, 40(18): 5885-5897.
LI X S, SUI Q, LI X N, et al.A flexible load control strategy for power grid considering fully consumption of surplus wind power and global benefits[J]. Proceedings of the CSEE, 2020, 40(18): 5885-5897.
[8] 张哲原, 李凌, 丁苏阳, 等. 风电场柔性并网辅助系统及其优化模型[J]. 电网技术, 2019, 43(4): 1220-1226.
ZHANG Z Y, LI L, DING S Y, et al.Modeling and operation strategy research on flexible wind farm grid-connection auxiliary system[J]. Power system technology, 2019, 43(4): 1220-1226.
[9] 随权, 马啸, 魏繁荣, 等. 计及燃料电池热-电综合利用的能源网日前调度优化策略[J]. 中国电机工程学报, 2019, 39(6): 1603-1613, 1857.
SUI Q, MA X, WEI F R, et al.Day-ahead dispatching optimization strategy for energy network considering fuel cell thermal-electric comprehensive utilization[J]. Proceedings of the CSEE, 2019, 39(6): 1603-1613, 1857.
[10] 熊宇峰, 陈来军, 郑天文, 等. 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41(9): 31-38.
XIONG Y F, CHEN L J, ZHENG T W, et al.Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric power automation equipment, 2021, 41(9): 31-38.
[11] 蔡国伟, 西禹霏, 杨德友, 等. 基于风-氢的气电热联合系统模型的经济性能分析[J]. 太阳能学报, 2019, 40(5): 1465-1471.
CAI G W, XI Y F, YANG D Y, et al.Economic performance analysis of model of combined gas-heat-power system based on wind-hydrogen[J]. Acta energiae solaris sinica, 2019, 40(5): 1465-1471.
[12] 刘继春, 周春燕, 高红均, 等. 考虑氢能-天然气混合储能的电-气综合能源微网日前经济调度优化[J]. 电网技术, 2018, 42(1): 170-179.
LIU J C, ZHOU C Y, GAO H J, et al.A day-ahead economic dispatch optimization model of integrated electricity-natural gas system considering hydrogen-gas energy storage system in microgrid[J]. Power system technology, 2018, 42(1): 170-179.
[13] 熊军华, 焦亚纯, 王梦迪. 计及电转气的区域综合能源系统日前优化调度[J/OL]. 现代电力: 1-10[2021-09-11].
XIONG J H, JIAO Y C, WANG M D.A day-ahead optimal scheduling of regional integrated energy system considering power to gas[J/OL]. Modern electric power: 1-10[2021-09 11].
[14] 邱彬, 慕会宾, 王凯, 等. 计及氢气天然气混合运输的氢耦合综合能源系统优化调度[J/OL]. 电力系统及其自动化学报: 1-10[2022-04-14]. DOI:10.19635/j.cnki.csu-epsa.000935.
QIU B, MU H B, WANG K, et al.An optimal scheduling model of hydrogen coupling IES considering the mixed transportation of hydrogen and natural gas[J/OL]. Proceedings of the CSU-EPSA, 1-10[2022-04-14]. DOI:10.19635/j.cnki.csu-epsa.000935.
[15] 周兆伦. 氢储能耦合天然气燃气蒸汽联合循环系统能效分析[J]. 太阳能学报, 2021, 42(5): 39-45.
ZHOU Z L.Energy efficiency analysis of hydrogen storage coupled gas-steam combined cycle[J]. Acta energiae solaris sinica, 2021, 42(5): 39-45.
[16] 崔杨, 闫石, 仲悟之, 等. 含电转气的区域综合能源系统热电优化调度[J]. 电网技术, 2020, 44(11): 4254-4264.
CUI Y, YAN S, ZHONG W Z, et al.Optimal thermoelectric dispatching of regional integrated energy system with power-to-gas[J]. Power system technology, 2020, 44(11): 4254-4264.
[17] 蒙浩, 吕泽伟, 韩敏芳. 日本家用燃料电池热电联供系统商业化应用分析[J]. 中外能源, 2018, 23(10): 1-8.
MENG H, LYU Z W, HAN M F.Commercial application of household fuel cell CHP system in Japan[J]. Sino-global energy, 2018, 23(10): 1-8.
[18] 刘兰兰. 日本家用燃料电池技术进展[J]. 电源技术, 2015, 39(6): 1337-1339.
LIU L L.Development of household fuel cells in Japan[J]. Chinese journal of power sources, 2015, 39(6): 1337-1339.
[19] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-135.
CAI G W, KONG L G, XUE Y, et al.Emergency control optimization measures for isolated power grid with heavy load of electrolytic aluminum[J]. Automation of electric power systems, 2014, 38(21): 127-135.
[20] 朱兰, 王吉, 唐陇军, 等. 计及电转气精细化模型的综合能源系统鲁棒随机优化调度[J]. 电网技术, 2019, 43(1): 116-126.
ZHU L, WANG J, TANG L J, et al.Robust stochastic optimal dispatching of integrated energy systems considering refined power-to-gas model[J]. Power system technology, 2019, 43(1): 116-126.
[21] 马腾飞, 裴玮, 肖浩, 等. 基于纳什谈判理论的风-光-氢多主体能源系统合作运行方法[J]. 中国电机工程学报, 2021, 41(1): 25-39, 395.
MA T F, PEI W, XIAO H, et al.Cooperative operation method for wind-solar-hydrogen multi-agent energy system based on nash bargaining theory[J]. Proceedings of the CSEE, 2021, 41(1): 25-39, 395.
[22] 路凯. 质子交换膜燃料电池动态响应特性分析及寿命预测研究[D]. 北京: 北京交通大学, 2020.
LU K.Dynamic response analysis and life prediction of Proton exchange membrane fuel cell[D]. Beijing: Beijing Jiaotong University, 2020.
[23] 贾秋红, 韩明, 邓斌, 等. 质子交换膜燃料电池动态建模及特性分析[J]. 电化学, 2011, 17(4): 438-443.
JIA Q H, HAN M, DENG B, et al.Dynamic modeling and characteristic analysis of proton exchange membrane fuel cell[J]. Journal of electrochemistry, 2011, 17(4): 438-443.
[24] 常英杰. 质子交换膜燃料电池动态建模与性能仿真分析[D]. 重庆: 重庆理工大学, 2017.
CHANG Y J.Dynamic modeling and performance simulation analysis of proton exchange membrane fuel cell[D]. Chongqing: Chongqing University of Technology, 2017.
[25] 皇甫宜耿, 任子俊, 张羽翔, 等. 质子交换膜燃料电池动态特性建模及仿真[J]. 电力电子技术, 2020, 54(12): 44-46.
HUANGFU Y G, REN Z J, ZHANG Y X, et al.Dynamic characteristics modeling and simulation of proton exchange membrane fuel cells[J]. Power electronics, 2020, 54(12): 44-46.
[26] 彭湃, 程汉湘, 陈杏灿, 等. 质子交换膜燃料电池的数学模型及其仿真研究[J]. 电源技术, 2017, 41(3): 399-402.
PENG P, CHENG H X, CHEN X C, et al.Mathematical model and simulation study of proton exchange membrane fuel cells[J]. Chinese journal of power sources, 2017, 41(3): 399-402.
[27] 肖燕, 常英杰, 张伟, 等. 启动工况下质子交换膜燃料电池动态性能仿真分析[J]. 电化学, 2018, 24(2): 166-173.
XIAO Y, CHANG Y J, ZHANG W, et al.Simulation analysis in dynamic performance of proton exchange membrane fuel cell under starting condition[J]. Journal of electrochemistry, 2018, 24(2): 166-173.
[28] 霍海波, 周帅福, 杨海东, 等. 基于LS-SVM辨识的PEMFC动态建模及仿真[J]. 电池, 2020, 50(1): 31-34.
HUO H B, ZHOU S F, YANG H D, et al.Dynamic modeling and simulation of PEMFC based on LS-SVM identification[J]. Battery bimonthly, 2020, 50(1): 31-34.
[29] 柯超, 甘屹, 王胜佳, 等. 基于温度效应的空冷型质子交换膜燃料电池动态建模[J]. 太阳能学报, 2021, 42(8): 488-495.
KE C, GAN Y, WANG S J, et al.Dynamic modeling of air-cooled proton exchange membrane fuel cell based on temperatureP effect[J]. Acta energiae solaris sinica, 2021, 42(8): 488-495.
[30] 游志宇, 邵仕泉, 刘涛, 等. 空冷自增湿燃料电池最优控制方法研究[J]. 太阳能学报, 2019, 40(1): 259-267.
YOU Z Y, SHAO S Q, LIU T, et al.Study on optimal control method for self-humidifying fuel cell with air-cooled[J]. Acta energiae solaris sinica, 2019, 40(1): 259-267.

基金

国家自然科学基金(62076243)

PDF(1819 KB)

Accesses

Citation

Detail

段落导航
相关文章

/