考虑退役动力电池衰减特性的新能源场站群共享储能长期规划配置

李笑竹, 陈来军, 杜锡力, 王再闯, 梅生伟

太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 499-509.

PDF(7221 KB)
欢迎访问《太阳能学报》官方网站,今天是
PDF(7221 KB)
太阳能学报 ›› 2022, Vol. 43 ›› Issue (5) : 499-509. DOI: 10.19912/j.0254-0096.tynxb.2022-0505

考虑退役动力电池衰减特性的新能源场站群共享储能长期规划配置

  • 李笑竹1, 陈来军2, 杜锡力2, 王再闯3, 梅生伟1,2
作者信息 +

STUDY ON LONG-TERM PLANNING OF SHARED ENERGY STORAGE AT POWER GENERATION CONSIDERING ATTENUATION CHARACTERISTICS OF RETIRED POWER BATTERIES

  • Li Xiaozhu1, Chen Laijun2, Du Xili2, Wang Zaichuang3, Mei Shenwei1,2
Author information +
文章历史 +

摘要

为最大化利用退役动力电池的全生命周期价值、解决共享储能在电力系统扩展规划方面需兼顾多方利益的经济性难题,计及逐渐增加的新能源装机容量与负荷需求,提出考虑退役动力电池衰减特性的发电侧共享储能长期规划模型。首先,设计基于退役动力电池的发电侧共享储能运营模式以打破能量共享壁垒,使其既能服务于自身新能源场站又可实现多个新能源场站间的能量互济、必要时还能参与电网的动态调频。其次,考虑退役动力电池衰减特性构建多个新能源场站自配并共享储能的长期规划模型,模型基于合作博弈以应对多方利益诉求冲突给资源优化配置带来的经济性挑战。最后以算例仿真验证所提发电侧共享储能运营模式及长期规划模型的可行性。

Abstract

To maximize the life cycle value of retired batteries and solve the economic problem of taking into account the interests of multiple parties in the allocation of shared energy storage. Considering the impact of the gradually increasing installed capacity of new energy on the expansion planning of power systems, a long-term planning model of shared energy storage on the generation side considering the attenuation characteristics of retired batteries is proposed. Firstly, the operation mode of shared energy storage the generation is designed to break the energy sharing barrier so that it can not only serve its new energy stations but also serve others, and participate in the dynamic frequency modulation of the power grid. Secondly, considering the attenuation characteristics of decommissioned batteries, a long-term planning model of self-distribution and shared energy storage is constructed. The model is based on a cooperative game to deal with the economic challenges brought by the conflict of multi-interest demands to the optimal allocation of resources. Finally, the case studies are given to verify the feasibility of the proposed generation side shared energy storage operation mode and long-term planning model.

关键词

退役动力电池 / 新能源场站 / 共享储能 / 长期规划 / 容量配置

Key words

retired power batteryies / new energy station / shared energy storage / long-range planning / capacity configuration

引用本文

导出引用
李笑竹, 陈来军, 杜锡力, 王再闯, 梅生伟. 考虑退役动力电池衰减特性的新能源场站群共享储能长期规划配置[J]. 太阳能学报. 2022, 43(5): 499-509 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0505
Li Xiaozhu, Chen Laijun, Du Xili, Wang Zaichuang, Mei Shenwei. STUDY ON LONG-TERM PLANNING OF SHARED ENERGY STORAGE AT POWER GENERATION CONSIDERING ATTENUATION CHARACTERISTICS OF RETIRED POWER BATTERIES[J]. Acta Energiae Solaris Sinica. 2022, 43(5): 499-509 https://doi.org/10.19912/j.0254-0096.tynxb.2022-0505
中图分类号: TM76   

参考文献

[1] AKRAM U, MITHULANANTHAN N, SHAH R,et al.Sizing HESS as inertial and primary frequency reserve in low inertia power system[J]. IET renewable power generation, 2021, 15(1): 8-17.
[2] MEI J, CHEN C, WANG J H, et al.Coalitional game theory based local power exchange algorithm for networked microgrids[J]. Applied energy, 2019, 239: 133-141.
[3] HOU K, JIA H J, XU X D, et al.A continuous time Markov chain based sequential analytical approach for composite power system reliability assessment[J]. IEEE transactions on power systems, 2016, 31(1): 738-748.
[4] 孙偲, 陈来军, 邱欣杰, 等. 基于合作博弈的发电侧共享储能规划模型[J]. 全球能源互联网, 2019, 2(4): 360-366.
SUN C, CHEN L J, QIU X J, et al.A generation-side shared energy storage planning model based on cooperative game[J]. Journal of global energy interconnection, 2019, 2(4): 360-366.
[5] 李建林, 李雅欣, 陈光, 等. 退役动力电池健康状态特征提取及评估方法综述[J]. 中国电机工程学报, 2022, 42(4): 1332-1347.
LI J L, LI Y X, CHEN G, et al.Research on feature extraction and soh evaluation methods for retired power batter[J]. Proceedings of the CSEE, 2022, 42(4): 1332-1347.
[6] 韩晓娟, 张婳, 修晓青, 等. 配置梯次电池储能系统的快速充电站经济性评估[J]. 储能科学与技术, 2016, 5(4): 514-521.
HAN X J, ZHANG H, XIU X Q, et al.Economic evaluation of fast charging electric vehicle station with second-use batteries energy storage system[J]. Electrical measurement & instrumentation, 2016, 5(4): 514-521.
[7] 郑志坤, 赵光金, 金阳, 等. 基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J]. 电工技术学报, 2019, 34(S1): 388-395.
ZHENG Z K, ZHAO G J, JIN Y, et al.The reutilization screening of retired electric vehicle lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 388-395.
[8] 颜湘武, 邓浩然, 郭琪, 等. 基于自适应无迹卡尔曼滤波的动力电池健康状态检测及梯次利用研究[J]. 电工技术学报, 2019, 34(18): 3937-3948.
YAN X W, DENG H R, GUO Q, et al.Study on the state of health detection of power batteries based on adaptive unscented kalman filters and the battery echelon utilization[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3937-3948.
[9] 严干贵, 李洪波, 段双明, 等. 基于模型参数辨识的储能电池状态估算[J]. 中国电机工程学报, 2020, 40(24): 8145-8154, 8251.
YAN G G, LI H B, DUAN S M, et al.Energy storage battery state estimation based on model parameter identification[J]. Proceedings of the CSEE, 2020, 40(24): 8145-8154, 8251.
[10] 解坤, 姜成龙, 吴亮璇, 等. 基于退役动力电池梯次利用的源-储容量优化配置[J]. 储能科学与技术, 2020, 9(S1): 23-30. XIE K, JIANG C L, WU L X, et al. Optimal capacity-allocation of generation and battery storage system based on cascade utilization of outdated battery[J]. Energy storage science and technology, 2020, 9(S1): 23-30.
[11] 王帅, 尹忠东, 田硕文, 等. 基于退役动力电池的家庭储能容量优化配置[J]. 电测与仪表, 2020, 57(9): 58-64, 88.
WANG S, YIN Z D, TIAN S W, et al.Capacity allocation of household energy storage system based on second-use of retired power battery[J]. Electrical measurement & instrumentation, 2020, 57(9): 58-64, 88.
[12] 崔传世, 谢丽蓉, 包洪印, 等. 平抑风电功率波动退役动力电池储能系统容量配置[J]. 电源技术, 2020, 44(8): 1185-1190.
CUI C S, XIE L R, BAO H Y, et al.Capacity configuration of retired battery energy storage system for smoothing wind power fluctuations[J]. Chinese journal of power sources, 2020, 44(8): 1185-1190.
[13] YUE C, WEI W, FENG L, et al.Energy trading and market equilibrium in integrated heat-power distribution systems[J]. IEEE transactions on smart grid, 2019, 10(4): 4080-4094.
[14] 李笑竹, 王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188.
LI X Z, WANG W Q.Bi-level robust game optimal scheduling of regional comprehensive energy system based on Copula-RCVaR model[J]. Journal of Zhejiang University(engineering science edition), 2021, 55(1): 177-188.
[15] SEYEDALI M, LEWIS A.The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[16] 李笑竹, 王维庆. 基于多目标飞蛾扑火算法的含风电电力系统动态环境经济调度[J]. 电气工程学报, 2020, 15(3): 1-12.
LI X Z, WANG W Q.Dynamic environmental economic dispatch of wind farm based on multi-objective moth-flame optimization[J]. Journal of electrical engineering, 2020, 15(3): 1-12.
[17] 任领志. 基于共同利益博弈的绿色证书交易策略行为与契约设计[D]. 北京: 华北电力大学, 2019.
REN L Z.Strategic behavior and contract desigh of green cerfication trading based on common interest game[D]. Beijing: North China Electric Power University, 2019.
[18] 李雄, 李培强. 梯次利用动力电池规模化应用经济性及经济边界分析[J]. 储能科学与技术, 2022, 11(2): 717-725.
LI X, LI P Q.Analysis of economics and economic boundaries of large-scale application of power batteries in cascade utilization[J]. Energy storage science and technology, 2022, 11(2): 717-725.

基金

国家自然科学基金(52077109); 青海省科技成果转化专项项目(2021-GX-109)

PDF(7221 KB)

Accesses

Citation

Detail

段落导航
相关文章

/